Math, asked by 222007, 2 days ago

Prove : cot 0/ cosec 0+1 + cosec 0+1 /cot 0 = 2 sec 0.​

Answers

Answered by sghvvishald11a
2

LHS = `cot theta/((cosec theta + 1)) + ((cosec theta + 1))/ cot theta`

=` (cot^2 theta + ( cosec theta +1)^2)/((cosec theta + 1) cot theta)`

=`(cot^2 theta + cosec ^2 theta + 2 cosec theta +1)/((cosec theta +1) cot theta)`

=` (cot^2 theta+ cosec ^2 theta + 2 cosec theta + cosec^2 theta - cot^2 theta)/((cosec theta +1) cot theta)`

=` (2 cosec ^2 theta + 2 cosec theta)/((cose theta +1) cot theta)`

=`(2 cosec theta ( cosec + 1))/((cosec theta + 1) cot theta)`

=`(2cosec theta)/(cot theta)`

=` 2 xx 1/sin thetaxx sin theta/ cos theta`

=`2 sec theta`

=RHS

Hence, LHS = RHS

please mark as brainliest answer

Similar questions