Math, asked by Yunisha123, 1 year ago

Prove cot^2a-cos^2a=cot^2a cos^2a

Answers

Answered by bidisha496
22
\huge\bf\red{\mid{\overline{\underline{Question:}}}\mid}

Prove that :
 { \cot }^{2}a \: - { \cos}^{2} a = { \cot }^{2} a { \cos }^{2} a

\huge\bf\red{\mid{\overline{\underline{Solution :}}}\mid}

L.H.S = { \cot }^{2} a - { \cos }^{2}a \\ \\ = {cot}^{2} a - {cot}^{2} a .\:{sin}^{2} a \\ (Since, {cot }^{2}a=\frac {{cos}^{2}a}{{sin}^{2}a} \\ \\ So,\: by \: cross- multiplying, \\ \\ we \: get, {cos}^{2}a= {cot}^{2}a \times {sin}^{2}a)\\ \\ = {cot}^{2} a(1 + {sin}^{2} a) \\ \\ = {cot}^{2} a. {cos}^{2} a = R.H.S

Hence, Proved.
Answered by Anonymous
56
 \textbf{ \Large { \underline { \underline{QUESTION - }}}}

 \textbf{cot$ ^{2} $a - cos$ ^{2} $a = \: cot$ ^{2} $a . cos$ ^{2} $a }

 \textbf{ \Large { \underline { \underline{SOLUTION - }}}}

 \textbf{ \underline { \underline{we \: have}}}

 \textbf{cot$ ^{2} $a - cos$ ^{2} $a = \: cot$ ^{2} $a . cos$ ^{2} $a } \\ \\ \textsf{taking \: LHS} \\ \\ \implies{\textbf {cot$ ^{2} $a - cos$ ^{2} $a }} \\ \\ \textsf{as \: we \: know} \\ \\ \rightarrow \: \frac{ \text{cos a}}{\text{sin a}} = \text{cot a} \\ \\ \textsf{by \: cross - multiplying....} \\ \\ \rightarrow \: \text{cos a = cot a . sin a} \\ \\ \textsf{squaring \: both \: side....} \\ \textsf{we \: get...} \\ \\ \text{cos$ ^{2} $a = cot$ ^{2} $a . sin $ ^{2} $a} \\ \\ \boxed{ \textsf{putting \: the \: value \: of \: $ \text{cos}^{2} $a \: in \: $ \text{cot}^{2} $a - $ \text{cos}^{2} $a}} \\ \\ \implies \: \text{cot$ ^{2} $a - cot$ ^{2} $a . sin$ ^{2} $a} \\ \\ \implies \: \text{cot$ ^{2} $a \: (1 - sin$ ^{2} $a)} \\ \\ \textbf{as \: we \: know \: the \: 1st \: trigonometrical identity} \\ \\ \rightarrow \: \text{sin$ ^{2} $a + cos$ ^{2} $a = 1} \\ \rightarrow \text{cos$ ^{2} $a = 1 - sin$ ^{2} $a} \\ \\ \boxed{ \textsf{putting \: this \: value \: of \: cos$ ^{2} $a \: in \: cot$ ^{2} $a \: (1 - sin$ ^{2} $a)}} \\ \\ \text{cot$ ^{2} $a \: (1 - sin$ ^{2} $a)} \\ \\ \implies \text{cot$ ^{2} $a . cos$ ^{2} $a}

 \boxed{ \text{cot$ ^{2} $a . cos$ ^{2} $a = RHS}}

 \textbf { \underline { \underline{hence \: proved}}}

Anonymous: vely gud ❤
Anonymous: DI aag lagadi aapne
Anonymous: Thanks
bidisha496: great answer dii
Anonymous: :)
Anonymous: Thanks
Anonymous: sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry sorry
Similar questions