Math, asked by sweetyrout2706, 7 months ago

Prove
cot 2A = cot²A-1/2 cotA​

Answers

Answered by nikunjc971
3

Step-by-step explanation:

2cot 2A= 2cos2A/sin2A

Double angle identities for :-

Cos2A = Cos²Α−Sin²Α

Sin2A= 2SinACosA

Put the value of Cos2A and Sin2A

2cot2A = 2(cos²Α-sin²Α)/2sinA cosA

2cot2A = (cos²Α/sinAcosA)-(sin²A/sinAcosA

2cot2A= cotA - tanA

Mark this answer brainlist

Answered by MagikMath
1

Step-by-step explanation:

tan 2A =  2tanA / (1 - tan^{2}A)

cot 2A = 1/tan 2A

cot 2A = (1-tan^{2}A) / 2tan A

cot2A = (1-1/cot^2A) / (2/cotA)cot 2A = [(cot^2A-1)/cot^{2}A]*(cotA/2)

cot2A = (cot^{2}A -1)/2cotA

Hence, proved

Hope you understand it

Similar questions