Math, asked by AbhiACHU5998, 9 months ago

Prove cot a- tan a= 2cos^2a-1/sina cosa

Answers

Answered by Anonymous
2

\huge\sf\purple{\underline{\underline{\pink{Ans}\red{wer:-}}}}

\sf\orange{To \ prove:}

\sf{cot \ a \ - \ tan \ a=\frac{2cos^{2}a-1}{sin \ a \ cos \ a}}

\sf\green{\underline{\underline{Proof:}}}

\sf{L.H.S.=cot \ a \ - \ tan \ a}

\sf{(cot=\frac{cos}{sin})}

\sf{(tan=\frac{sin}{cos})}

\sf{Trigonometric \ ratio}

\sf{=\frac{cos \ a}{sin \ a}-\frac{sin \ a}{cos \ a}}

\sf{=\frac{cos^{2}a-sin^{2}a}{sin \ a \ cos \ a}}

\sf{sin^{2}=1-cos^{2}}

\sf{Trigonometric \ identity}

\sf{=\frac{cos^{2}a-(1-cos^{2}a)}{sin \ a \ cos \ a}}

\sf{=\frac{cos^{2}a-1+cos^{2}a}{sin \ a \ cos \ a}}

\sf{=\frac{2cos^{2}a-1}{sin \ a \ cos \ a}}

\sf{=R.H.S.}

\sf{Hence, \ proved}

\sf\purple{cot \ a \ - \ tan \ a=\frac{2cos^{2}a-1}{sin \ a \ cos \ a}}

Answered by Anonymous
3

\large{\underline{\bf{\purple{To\:Find:-}}}}

  • ✦ we need to prove that cot a - tan a = 2cos² a - 1/sin a. cos a

\huge{\underline{\bf{\red{Solution:-}}}}

LHS :-

 \longmapsto  \rm\:\:cot \: a \:  - tan \: a \:  \\  \\   \rm\:\:we \: know \: that \:{ \blue{ cot \theta  =  \frac{cos \theta}{sin \theta} }}\:  \\  \\ \longmapsto  \rm\:\: \frac{cos \: a}{sin \: a} - tan \: a \\  \\ \rm\:\:  we \: know \: that \: { \blue{tan \theta =  \frac{sin \theta}{cos \theta} }} \\  \\\longmapsto  \rm\:\: \frac{cos  \: a}{sin \: a}   -  \frac{sin \:a }{cos \ \: a} \\  \\ \longmapsto  \rm\:\:  \frac{ {cos}^{2} a -  {sin}^{2}a }{sin \: a.cos \: a}  \\  \\  \rm{ \blue{sin {}^{2} \theta = 1 - cos {}^{2} \theta  }}  \:\: \\  \\\longmapsto  \rm\:\:  \frac{ {cos}^{2} a - (1 - cos {}^{2} a)}{sin \: a.cos \: a} \\  \\ \longmapsto  \rm\:\:    \frac{ {cos}^{2} a - 1 +  {cos}^{2} a}{sin \: a .cos \: a} \\  \\\longmapsto  \bf\:\: \frac{2 {cos}^{2}   a - 1}{sin \: a.cos \: a}\\\\

LHS = RHS

Hence proved.

━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions