Prove :cot square(secA-1)/1+sin=sec square(1-sinA) /1+secA
Answers
Answered by
443
LHS
=cot²A(secA-1)/(1+sinA)
={(cos²A/sin²A)(1/cosA-1)}/(1+sinA)
=[{cos²A/(1-cos²A)}{(1-cosA)/cosA}]/(1+sinA)
=[{cos²A/(1+cosA)(1-cosA)}×{(1-cosA)cosA}]/(1+sinA)
={cosA/(1+cosA)}/(1+sinA)
=cosA/(1+sinA)(1+cosA)
RHS
=sec²A(1-sinA)/(1+secA)
=(1/cos²A)(1-sinA)/(1+1/cosA)
={(1-sinA)/cos²A}/{(1+cosA)/cosA}
={(1-sinA)/(1-sin²A)}/{(1+cosA)/cosA}
={(1-sinA)/(1+sinA)(1-sinA)}/{(1+cosA)/cosA}
={1/(1+sinA)}/{(1+cosA)/cosA}
=cosA/(1+sinA)(1+cosA)
∴, LHS=RHS (Proved)
=cot²A(secA-1)/(1+sinA)
={(cos²A/sin²A)(1/cosA-1)}/(1+sinA)
=[{cos²A/(1-cos²A)}{(1-cosA)/cosA}]/(1+sinA)
=[{cos²A/(1+cosA)(1-cosA)}×{(1-cosA)cosA}]/(1+sinA)
={cosA/(1+cosA)}/(1+sinA)
=cosA/(1+sinA)(1+cosA)
RHS
=sec²A(1-sinA)/(1+secA)
=(1/cos²A)(1-sinA)/(1+1/cosA)
={(1-sinA)/cos²A}/{(1+cosA)/cosA}
={(1-sinA)/(1-sin²A)}/{(1+cosA)/cosA}
={(1-sinA)/(1+sinA)(1-sinA)}/{(1+cosA)/cosA}
={1/(1+sinA)}/{(1+cosA)/cosA}
=cosA/(1+sinA)(1+cosA)
∴, LHS=RHS (Proved)
Answered by
165
Answer
Step-by-step explanation:hope this will help you...:)
Attachments:
Similar questions