Prove cot2A – cos2A = cot2Acos2A
Answers
Answered by
35
Let us take the LHS of the equation Cot2A - Cos2A
Cot A = Cos A / Sin A
Cot2A = cos2A / sin2A
substituting the value of cot2A in the above expression, we get
Cos2A / Sin2A - Cos2A.
Taking LCM, and expanding the expression, we get
(Cos2A - Sin2A Cos2A) / Sin2A = Cos2A * (1-Sin2A) / Sin2A
= (Cos2A/Sin2A) * (1-Sin2A)
Cos2A/Sin2A = Cot2A and 1-Sin2A = Cos2A
Thus, we get
(Cos2A/Sin2A) * (1 - Sin2A) = Cot2ACos2A = RHS.
Thus, proved.
Cot A = Cos A / Sin A
Cot2A = cos2A / sin2A
substituting the value of cot2A in the above expression, we get
Cos2A / Sin2A - Cos2A.
Taking LCM, and expanding the expression, we get
(Cos2A - Sin2A Cos2A) / Sin2A = Cos2A * (1-Sin2A) / Sin2A
= (Cos2A/Sin2A) * (1-Sin2A)
Cos2A/Sin2A = Cot2A and 1-Sin2A = Cos2A
Thus, we get
(Cos2A/Sin2A) * (1 - Sin2A) = Cot2ACos2A = RHS.
Thus, proved.
srinidhi2:
thanks
Similar questions
Math,
7 months ago
English,
7 months ago
Accountancy,
1 year ago
Social Sciences,
1 year ago
Geography,
1 year ago
English,
1 year ago