Math, asked by bhavnakapoorvaish, 11 months ago

Prove
cot2x.(secx-1/1+sinx) +sec2x(sinx-1/1+secx)=0

Answers

Answered by MaheswariS
24

\text{Consider,}

\displaystyle\,cot^2x(\frac{secx-1}{1+sinx})+sec^2x(\frac{sinx-1}{1+secx})

=\displaystyle\,\frac{cot^2x(secx-1)(secx+1)+sec^2x(sinx-1)(sinx+1)}{(1+secx)(1+secx)}

\text{Using,}\;\bf(a+b)(a-b)=a^2-b^2

=\displaystyle\,\frac{cot^2x(sec^2x-1)+sec^2x(sin^2x-1)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{cot^2x(tan^2x)+sec^2x(-cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{cot^2x(tan^2x)-sec^2x(cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{\frac{1}{tan^2x}(tan^2x)-\frac{1}{cos^2x}(cos^2x)}{(1+secx)(1+secx)}

=\displaystyle\,\frac{1-1}{(1+secx)(1+secx)}

=\displaystyle\,\frac{0}{(1+secx)(1+secx)}

=0

\therefore\bf\,\displaystyle\,cot^2x(\frac{secx-1}{1+sinx})+sec^2x(\frac{sinx-1}{1+secx})=0

Find more:

(Sinx+cosx)/(sinx-cosx) =3, then the value of sin^4x-cos^4x is

https://brainly.in/question/2168445#

Similar questions