Prove
= Cotx
cos(x - x)cos(-x)
sin(1 – x)cos
2
Answers
Answered by
4
To prove:- sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x=cosx
Proof :−
L.H.S.=
sin(n+1)xsin(n+2)x+cos(n+1)xcos(n+2)x
=cos((n+2)x−(n−1)x){∵cos(A−B)=sinAsinB+cosAcosB}
⇒=cos((n+2−n−1)x)
⇒=cosx=R.H.S.
Hence proved..
Similar questions