Math, asked by sumitcs0033owbp2w, 1 year ago

prove determinant | 1+a2-b2, 2ab, -2b, 2ab, 1-a2+b2 , 2a , 2b , -2a , 1-a2-b2 | = ( 1+ a2 + b2 )^3

Attachments:

Answers

Answered by kshitij064
36
it was easy and lengthy hope it helps you
Attachments:

kshitij064: mark as brainliest
Answered by Anonymous
16

We have to Prove that

\left[\begin{array}{ccc}1+a^{2}-b^{2}  &2ab&-2b\\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right] = (1+a^{2}+b^{2}  )^{3}

Using properties of determinants

  • Now, we have

\left[\begin{array}{ccc}1+a^{2}-b^{2}  &2ab&-2b\\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right] = (1+a^{2}+b^{2}  )^{3}

  • Solving LHS :

\left[\begin{array}{ccc}1+a^{2}-b^{2}  &2ab&-2b\\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right]

As we know that the value of determinants doesn't change by applying row transformations, therefore

Using row transformation

  • R1→ R1 +bR3

\left[\begin{array}{ccc}1+a^{2}-b^{2} +2b^{2}   &2ab-2ab&-2b+b-a^{2}b-b^{3}  \\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right]

\left[\begin{array}{ccc}1+a^{2}+b^{2}    &0&-b(1+a^{2}+b^{2})  \\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right]

Using row transformation

  • R2→ R2 - aR3

\left[\begin{array}{ccc}1+a^{2}+b^{2}    &0&-b(1+a^{2}+b^{2})  \\2ab-2ab&1-a^{2}+b^{2}+2a^{2}   &2a-a+a^{3}+b^{2}a  \\2b&-2a&1-a^{2}-b^{2}  \end{array}\right]

\left[\begin{array}{ccc}1+a^{2}+b^{2}    &0&-b(1+a^{2}+b^{2})  \\0&1+a^{2}+b^{2}   &a(1+a^{2}+b^{2}) \\2b&-2a&1-a^{2}-b^{2}  \end{array}\right]

Taking 1 + a^{2} +b^{2} common from R1 and R2, we get

\left[\begin{array}{ccc}1   &0&-b  \\0&1   &a \\2b&-2a&1-a^{2}-b^{2}  \end{array}\right] (1 +a^{2}+b^{2})  ^{2}

  • Now expanding the above determinant along R1, we get

= [1 ( 1 - a^{2} -b^{2} +2a^{2}) - 0(-2ab) -b(-2b)]  (1 + a^{2}+b^{2} ) ^{2} \\  = (1 + a^{2} - b^{2} + 2b^{2}  ) (1 + a^{2}+b^{2} ) ^{2}\\= (1 + a^{2}+b^{2}  )(1 + a^{2}+b^{2} ) ^{2}\\= (1 + a^{2}+b^{2} ) ^{3} \\= RHS

\left[\begin{array}{ccc}1+a^{2}-b^{2}  &2ab&-2b\\2ab&1-a^{2}+b^{2}  &2a\\2b&-2a&1-a^{2}-b^{2}  \end{array}\right] = (1+a^{2}+b^{2}  )^{3}

hence proved.

Similar questions