prove each of the following identities:
Answers
Step-by-step explanation:
First write Tan²A as Sin²A/Cos²A
Then you will get Sin²A /Cos²A -Sin²A
then multiply and divide the alone sin²A by Cos²A
then you will get Sin²A-Sin²ACos²A/Cos²A
then take the Sin²A common from numerator
you will get Sin²A(1-Cos²A)/cos²A
then use identity sin²A + cos²A =1 as 1-Cos²A=Sin²A
then write 1-cos²A in numerator as Sin²A
then you will get Sin²A Sin²A/cos²A
then write sin²A/cos²A= Tan²A
then you will get Sin²A Tan²A
hence proved
Step-by-step explanation:
To proof:
(i) tan^2A - sin^2A = tan^2A sin^2A
from LHS
tan^2A -sin^2A
= (sin^2A / cos^2A) - sin^2A.. [tan A=sin A/cos A]
= (sin^2A - sin^2A cos^2A) / cos2A
= sin ^2A (1-cos^2A) / cos^2A [tan A = sinA / cos A]
= tan^2A sin^2A= RHS
(ii)
cot^2A - cos^2A
= cos^2A/sin^2A-cos^2A
= (cos^2A - cos^2A sin^2A)/sin^2A
= cos^2A (1 - sin^2A)/sin^2A
= (cos^2A/ sin^2A) cos^2A
(1- sin^2A)
= cos^2A
= cot^2A cos^2A = RHS
Hope this helps :)