prove each of the following identities:(sec^2 theta-1)(cosec^2 theta-1)=1
Answers
Answered by
2
Given :
- (sec^2 ø - 1)(cosec^2 ø - 1)
To find :
- (sec^2 ø - 1)(cosec^2 ø- 1) = 1
Solution :
= (sec^2ø - 1) (cosecA2ø - 1) = 1
= L.H.S. = (sec^2 ø - 1) cosec^2ø - 1)
= (tan^2ø) x cot^2ø
(using identity 1 + cot^2 ø = cosec^2 ø and 1 + tan^2 ø = sec^2 ø)
= tan^2ø x 1/tan^2ø
= 1
= R.H.S
Hence Proved.
Addition information :
- tanø = sinø/cosø
- secø = 1/cosø
- cotø = 1/tanø = sinø/cosø
- 1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø
- tan ø/2 = ±√1 - cosø/1 + cosø
- sinø = Cos(90° - ø)
- cos6= sin(90° - ø)
- tanø = cot(90° - ø)
- cotø = tan(90° - ø)
- secø = cosec(90° - ø)
Answered by
16
Answer:
✳️ Given ✳️
(sec² - 1) (cosec² = 1)
✳️ Solution ✳️
(sec² - 1) (cosec² = 1)
We know that,
✴️ sec² - tan² = 1 ✴️
✴️ cosec² - cot² = 1 ✴️
So,
(sec²-1) (cosec²-1) = tan² × cot²
( tan × cot )
( tan × ²
(1)²
1
________________ ⭐ ___________________
Similar questions
Math,
3 months ago
Computer Science,
3 months ago
Computer Science,
7 months ago
English,
7 months ago
Physics,
1 year ago