Math, asked by sarkareyaz, 7 months ago

prove each of the following identities:(sec^2 theta-1)(cosec^2 theta-1)=1​

Answers

Answered by Anonymous
2

Given :

  • (sec^2 ø - 1)(cosec^2 ø - 1)

To find :

  • (sec^2 ø - 1)(cosec^2 ø- 1) = 1

Solution :

= (sec^2ø - 1) (cosecA2ø - 1) = 1

= L.H.S. = (sec^2 ø - 1) cosec^2ø - 1)

= (tan^2ø) x cot^2ø

(using identity 1 + cot^2 ø = cosec^2 ø and 1 + tan^2 ø = sec^2 ø)

= tan^2ø x 1/tan^2ø

= 1

= R.H.S

Hence Proved.

Addition information :

  • tanø = sinø/cosø

  • secø = 1/cosø

  • cotø = 1/tanø = sinø/cosø

  • 1 - tan(ø/2)/1 - tan(ø/2) = ±√1 - sinø/1 + sinø

  • tan ø/2 = ±√1 - cosø/1 + cosø

  • sinø = Cos(90° - ø)

  • cos6= sin(90° - ø)

  • tanø = cot(90° - ø)

  • cotø = tan(90° - ø)

  • secø = cosec(90° - ø)
Answered by misscutie94
16

Answer:

✳️ Given ✳️

\mapsto (sec²\theta - 1) (cosec²\theta = 1)

✳️ Solution ✳️

\mapsto (sec²\theta - 1) (cosec²\theta = 1)

We know that,

✴️ sec²\theta - tan²\theta = 1 ✴️

✴️ cosec²\theta - cot²\theta = 1 ✴️

So,

\leadsto (sec²\theta-1) (cosec²\theta-1) = tan²\theta × cot²\theta

\implies ( tan\theta × cot\theta )

\implies ( tan\theta × \dfrac{1}{tan\theta})²

\implies (1)²

\implies 1

\large\bf{Proved}

________________ ⭐ ___________________

Similar questions