Math, asked by shriyanshi1234, 9 months ago

prove for n>2,
n^3 - n always divisible by 12 using euclid division lemma​

Answers

Answered by kkr4489
0

(n^3-n)/12

hence n > 2

hope u can understand

Answered by bhagathmanoj2905
1

Answer:

Step-by-step explanation:

Any positive integer is of the form 6m,6m+1,6m+2,6m+3,6m+4,6m+5 for some positive integer n.

When n=6m,

n  

3

−n=(6m)  

3

−6m=216m  

3

−6m

=6m(36m  

2

−1)=6q where q=m(36m  

2

−1)

n  

3

−n is divisible by 6

When n=6m+1

n  

3

−n=n(n  

2

−1)=n(n−1)(n+1)

=(6m+1)(6m)(6m+2)

=6m(6m+1)(6m+2)

6q where q=m(6m+1)(6m+2)

When n=6m+2

n  

3

−n=n(n  

2

−1)=n(n−1)(n+1)

=(6m+1)(36m  

2

+30m+6)

=6m(36m  

2

+30m+6)+1(36m  

2

+30m+6)

=6[m(36m  

2

+30m+6)]+6(6m  

2

+5m+1)

=6p+6q, where p=m(36m  

2

+30m+6) and q=6m  

2

+5m+1

n  

3

−n is divisible by 6

When n=6m+3

n  

3

−n=(6m+3)  

2

−(6m+3)

=(6m+3)[(6m+3)  

2

−1]

=6m((6m+3)  

2

−1)+3((6m+3)  

2

−1)

=6[m((6m+3)  

2

−1)]+3[36m  

2

+36m+8]

=6p+3q,

where p=m((6m+3)  

2

−1) and q=36m  

2

+36m+8

n  

3

−n is divisible by 6

When n=6m+4

n  

3

−n=(6m+4)  

3

−(6m+4)

=(6m+4)[(6m+4)  

2

−1]

=6m[(6m+4)  

2

−1]+4[(6m+4)  

2

−1]

=6m[(6m+4)  

2

−1]+4[36m  

2

+48m+15]

=6m[(6m+4)  

2

−1]+12[12m  

2

+16m+5]

=6m[(6m+4)  

2

−1]+6[24m  

2

+32m+10]

=6p+6q, where p=m[(6m+4)  

2

−1] and q=24m  

2

+32m+10

n  

3

−n is divisible by 6

When n=6m+5

n  

3

−n=(6m+5)  

3

−(6m+5)

=6m[(6m+5)  

2

−1]+5[(6m+5)  

2

−1]

=6m[(6m+5)  

2

−1]+5[36m  

2

+60m+24]

=6p+30q

=6(p+5q)

=6(p+5q) where p=m[(6m+5)  

2

−1] and q=6m  

2

+10m+5

n  

3

−n is divisible by 6

Hence, n  

3

−n is divisible by 6 for any positive integer n

Similar questions