prove geometrically cos(A+B)=cosA.cosB-sinA.sinB and hence show that cos (90+x)= - sinx
Answers
Answered by
0
cos(a+b)=AC−BC=AC−FD
=cos(a)cos(b)−sin(a)sin(b)
sin(a+b)=BF+FE=CA+FE
=sin(a)cos(b)+
Answered by
0
Answer:
cos(90+x)=cos90.cosx-sin90.sinx)
cos90=0,cos0.cosx=0,sin90=1
0-1.sinx=-sinx
hence proved that cos(90+x)=-sinx
Step-by-step explanation:
Similar questions
Physics,
9 days ago