Math, asked by kotemanju773, 2 months ago

prove geometrically cos(x+y)=cosx×cosy-sinx×siny and hence show that cos 2x=cos²x-sin²x​

Answers

Answered by SparklingBoy
11

Proof of cos(x+y) = cosx cosy - sinx siny:

Consider unit circle with centre O at the origin let A be the point (1 , 0). Let P , Q and R be the points on the circle such that arc AP = x , arc PQ = y and arc AR = - y.

Then Arc AQ = arc AP + arc PQ = x + y.

Therefore, the co-ordinates of point P , Q and R are

 \sf (cos  \: x ,sin \: x),(cos(x + y) ,sin(x + y))  \\   \bf and \\  \sf (cos(  - y),sin ( - y)) \: respectively

We have ,

arc PQ = arc RA

⟼ arc PQ + arc AP = arc RA + arc AP

⟼ arc AQ = arc RP

⟼ Length of chord AQ = Length of chord RP

(∵ In a circle , equal arcs cut off equal chords)

⟼ AQ = RP = \sf AQ^2=RP^2

⟼ \sf(   \cos(x + y)  - 1) {}^{2} +  (\sin(x + y - 0 {)}^{2} )   \\  \sf = ( \cos \:x -  \cos( - y)) {}^{2}  +  (\sin \: x -  \sin( - y) ) {}^{2}

⟼  \sf { \cos }^{2} (x + y) + 1  - 2 \cos(x + y)  +  \sin {}^{2} (x + y) \\  \sf =  {( \cos \: x -  \cos  \: y)}^{2}  + ( { \sin \: x +  \sin \: y)}^{2}

 \bf sin ( - y) =  - sin \: y \:  \: and \:  \: cos( - y) = cos \: y

⟼ \sf   \{\cos {}^{2} (x + y) +  \sin {}^{2} (x + y) \}  \\  \sf+ 1 - 2 \cos(x + y)  \\  \sf =  { \cos}^{2} x  +  \cos {}^{2} y - 2 \cos \: x \:  \cos \: y \\  \sf + \:   { \sin}^{2} x +  { \sin}^{2} y  + 2 \sin \: x \: \sin \: y

 ⟼\sf1 + 1 - 2 \cos(x + y)  \\  \sf =  {( \cos  }^{2} x +  { \sin}^{2} x) + {( \cos  }^{2} y +  { \sin}^{2} y) \\  \sf - 2 \cos x \cos y  + 2 \sin x  \sin y

 \sf⟼2 - 2 \cos(x + y)  =  \\  \sf1 + 1 -  2 \cos x \cos y  + 2 \sin x  \sin y \\  \\  \sf⟼ - 2 \cos(x + y)  = - 2 \cos x \cos y  + 2 \sin x  \sin y \\  \\   \purple{   \underline {\boxed{{\bf⟼ \cos(x + y)  =  \cos x \cos y -  \sin x  \sin y } }}}

Hence Proved !

___________________________

Proof of cos 2x = cos²x - sin²x :

 \sf \cos(2x)  =  \cos(x + x)  \\  \\   \bf \{using \: above \: formula \} \\  \\ =  \sf \cos x \cos x -  \sin x \sin x \\  \\  \large\purple{ \implies  \underline {\boxed{{\bf cos 2x=cos {}^{2} x-sin {}^{2} x} }}}

Hence Proved !

Attachments:
Similar questions