Math, asked by kotemanju773, 1 month ago

prove geometrically cos(x+y)=cosx×cosy-sinx×siny and hence show that cos 2x=cos²x-sin²x​

Answers

Answered by pulakmath007
3

SOLUTION

TO PROVE

1. Prove geometrically

 \displaystyle \sf{ \cos \:(x + y) =\cos x  \: \cos y -  \sin x   \: \sin y }

2. Hence prove that

 \sf{ \cos \:2x={\cos}^{2}  x  - { \sin}^{2}  x    }

EVALUATION

PROVE TO QUESTION : 1

Figure : Figure is referred to the attachment

In the figure

∠AOB = x and ∠ BOC = y

So that ∠ AOC = x + y

Clearly

∠ TPR + ∠ PRT = 90°

∠ ORT + ∠ PRT = 90°

Thus we have ∠ TPR = ∠ ORT = x

Now

 \displaystyle \sf{ \cos \:(x + y) \:  =  \frac{OQ}{OP}   }

 \displaystyle \sf{  \implies \: \cos \:(x + y) \:  =  \frac{OS - QS}{OP}   }

 \displaystyle \sf{  \implies \: \cos \:(x + y) \:  =  \frac{OS - TR}{OP}   }

 \displaystyle \sf{  \implies \: \cos \:(x + y) \:  =  \frac{OS}{OP} -  \frac{ TR}{OP}  }

 \displaystyle \sf{  \implies \: \cos \:(x + y) \:  =  \frac{OS}{OR} . \frac{OR}{OP} -  \frac{ TR}{PR}. \frac{PR}{OP}   }

 \displaystyle \sf{  \implies \:\cos \:(x + y) =\cos x  \: \cos y -  \sin x   \: \sin y }

Hence proved

PROOF TO QUESTION : 2

We have proved that

 \sf{\cos \:(x + y) =\cos x  \: \cos y -  \sin x   \: \sin y }

Putting y = x we get

 \sf{\cos \:(x + x) =\cos x  \: .\cos x   - \sin x   .\: \sin x }

 \sf{ \implies \: \cos 2x={\cos }^{2} x    - {\sin}^{2}  x  }

Hence proved

━━━━━━━━━━━━━━━━

Learn more from Brainly :-

1. If cosθ+secθ=√2,find the value of cos²θ+sec²θ

https://brainly.in/question/25478419

2. Value of 3 + cot 80 cot 20/cot80+cot20 is equal to

https://brainly.in/question/17024513

3. In a triangle, prove that (b+c-a)(cotB/2+cotC/2)=2a×cotA/2

https://brainly.in/question/19793971

Attachments:
Similar questions