Prove geometrically, the sum of first n natural numbers of an A. P. is n(n + 1)/2.
Answers
Answered by
12
For an A.P.,
a = first term
d = common difference
The terms are:
a , a + d, a + 2d ............. a+ (n-1)d
Sn = a + (a + d) + (a + 2d) ............. a+ (n-1)d ---------- (i)
Write in reverse order
Sn = [a + (n-1)d] + [a+ (n-2)d] + ............ + [(a+d) + a] -------- (ii)
Add (i) and (ii)
2Sn = 2a + (n-1)d + 2a + (n-1)d + 2a + (n-1)d + ...... up to the nth term
2Sn = n[(2a + (n-1)d]
Divide both sides by 2
Sn = [n(2a + (n-1)d]/2
For natural numbers, a = 1 and d = 1
Sn = [n(2(1) + (n-1)(1)]/2
= n(2 + n - 1)/2
= n( n + 1)/2
Proved
a = first term
d = common difference
The terms are:
a , a + d, a + 2d ............. a+ (n-1)d
Sn = a + (a + d) + (a + 2d) ............. a+ (n-1)d ---------- (i)
Write in reverse order
Sn = [a + (n-1)d] + [a+ (n-2)d] + ............ + [(a+d) + a] -------- (ii)
Add (i) and (ii)
2Sn = 2a + (n-1)d + 2a + (n-1)d + 2a + (n-1)d + ...... up to the nth term
2Sn = n[(2a + (n-1)d]
Divide both sides by 2
Sn = [n(2a + (n-1)d]/2
For natural numbers, a = 1 and d = 1
Sn = [n(2(1) + (n-1)(1)]/2
= n(2 + n - 1)/2
= n( n + 1)/2
Proved
Similar questions