prove herons formula step by step
Answers
Answer:
Explanation:Heron's formula states that the area of a triangle whose sides have lengths a, b, and c is
{\displaystyle A={\sqrt {s(s-a)(s-b)(s-c)}},} A = \sqrt{s(s-a)(s-b)(s-c)},
where s is the semi-perimeter of the triangle; that is,
{\displaystyle s={\frac {a+b+c}{2}}.} s=\frac{a+b+c}{2}.[2]
Heron's formula can also be written as
{\displaystyle A={\frac {1}{4}}{\sqrt {(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}}} A=\frac{1}{4}\sqrt{(a+b+c)(-a+b+c)(a-b+c)(a+b-c)}
{\displaystyle A={\frac {1}{4}}{\sqrt {2(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{4}+b^{4}+c^{4})}}} A=\frac{1}{4}\sqrt{2(a^2 b^2+a^2c^2+b^2c^2)-(a^4+b^4+c^4)}
{\displaystyle A={\frac {1}{4}}{\sqrt {(a^{2}+b^{2}+c^{2})^{2}-2(a^{4}+b^{4}+c^{4})}}} A=\frac{1}{4}\sqrt{(a^2+b^2+c^2)^2-2(a^4+b^4+c^4)}
{\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}.} {\displaystyle A={\frac {1}{4}}{\sqrt {4(a^{2}b^{2}+a^{2}c^{2}+b^{2}c^{2})-(a^{2}+b^{2}+c^{2})^{2}}}.}
Answer:
formula is below
Explanation: