Math, asked by kheradhruva006, 1 month ago

prove how (cosA/1-sinA) - (sinA/1-cosA)=secA + cosecA +secAcosecA

Answers

Answered by mathdude500
5

Appropriate Question :-

Prove that :-

\rm \:\dfrac{cosA}{1 - sinA} + \dfrac{sinA}{1 - cosA}   =  \: secA + cosecA  + secA \:  cosecA

\large\underline{\sf{Solution-}}

Consider LHS

\rm :\longmapsto\:\dfrac{cosA}{1 - sinA} + \dfrac{sinA}{1 - cosA}

On rationalizing each term, we get

\rm \:  =  \: \dfrac{cosA}{1 - sinA} \times \dfrac{1 + sinA}{1 + sinA}  +  \dfrac{sinA}{1 - cosA} \times \dfrac{1 + cosA}{1 + cosA}

We know that,

\boxed{ \tt{ \: (x + y)(x - y) =  {x}^{2} -  {y}^{2}  \: }}

So, using this, we get

\rm \:  =  \: \dfrac{cosA(1 + sinA)}{1 -  {sin}^{2}A}  +  \dfrac{sinA(1 + cosA)}{1 -  {cos}^{2}A}

We know that,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this we get

\rm \:  =  \: \dfrac{cosA(1 + sinA)}{{cos}^{2}A}  + \dfrac{sinA(1 + cosA)}{{sin}^{2}A}

\rm \:  =  \: \dfrac{1 + sinA}{cosA} +  \dfrac{1 + cosA}{sinA}

\rm \:  =  \: \dfrac{sinA +  {sin}^{2}A + cosA +  {cos}^{2}A}{cosA \: sinA}

\rm \:  =  \: \dfrac{sinA + cosA +  {sin}^{2}A +  {cos}^{2}A}{cosA \: sinA}

We know,

\boxed{ \tt{ \:  {sin}^{2}x +  {cos}^{2}x = 1 \: }}

So, using this, we get

\rm \:  =  \: \dfrac{sinA + cosA +  1}{cosA \: sinA}

\rm \:  =  \: \dfrac{sinA}{cosA \: sinA}  + \dfrac{cosA}{cosA \: sinA}  + \dfrac{1}{cosA \: sinA}

\rm \:  =  \: \dfrac{1}{cosA}  + \dfrac{1}{sinA}  + secA \:  cosecA

\rm \:  =  \: secA + cosecA  + secA \:  cosecA

Hence,

\boxed{ \tt{ \: \dfrac{cosA}{1 - sinA} + \dfrac{sinA}{1 - cosA} =secA + cosecA+ secAcosecA}}

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Additional Information:-

Relationship between sides and T ratios

sin θ = Opposite Side/Hypotenuse

cos θ = Adjacent Side/Hypotenuse

tan θ = Opposite Side/Adjacent Side

sec θ = Hypotenuse/Adjacent Side

cosec θ = Hypotenuse/Opposite Side

cot θ = Adjacent Side/Opposite Side

Reciprocal Identities

cosec θ = 1/sin θ

sec θ = 1/cos θ

cot θ = 1/tan θ

sin θ = 1/cosec θ

cos θ = 1/sec θ

tan θ = 1/cot θ

Co-function Identities

sin (90°−x) = cos x

cos (90°−x) = sin x

tan (90°−x) = cot x

cot (90°−x) = tan x

sec (90°−x) = cosec x

cosec (90°−x) = sec x

Fundamental Trigonometric Identities

sin²θ + cos²θ = 1

sec²θ - tan²θ = 1

cosec²θ - cot²θ = 1

Answered by thmenika
1

Answer:

pls check the Question ... I have attached the explanation

Attachments:
Similar questions