Prove i) cosA/1+sinA + 1+sinA/cosA= secA ii)tan/1-cot + cot/1-tan = 1+ sec,cosec....
Answers
Answered by
1
Answer:
hєчα mαtє
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]= (sin A – cos A)( sin^2 A + cos^2 A + sin A.cos A] / [sin A.cos A (sin A – cos A)]
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]= (sin A – cos A)( sin^2 A + cos^2 A + sin A.cos A] / [sin A.cos A (sin A – cos A)]= (sin A – cos A)( 1 + sin A.cos A] / [sin A.cos A (sin A – cos A)]
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]= (sin A – cos A)( sin^2 A + cos^2 A + sin A.cos A] / [sin A.cos A (sin A – cos A)]= (sin A – cos A)( 1 + sin A.cos A] / [sin A.cos A (sin A – cos A)]=( 1 + sin A.cos A] / sin A.cos A
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]= (sin A – cos A)( sin^2 A + cos^2 A + sin A.cos A] / [sin A.cos A (sin A – cos A)]= (sin A – cos A)( 1 + sin A.cos A] / [sin A.cos A (sin A – cos A)]=( 1 + sin A.cos A] / sin A.cos A= 1 + sec A.cosec A
Replace tan A by sin A/cos A and cot A by cos A/sin A. We get[sin A / cos A]/[1 – cos A/sin A] + [cos A/sin A]/[1 – sin A/cos A]Or sin A.sin A/[cos A(sin A – cosA)] + cos A.cos A/[sin A(cos A-sinA)].LCM of denominator is sin A.cos A (sin A – cos A)On simplifying we get(sin^3 A – cos^3 A)/ [sin A.cos A (sin A – cos A)]= (sin A – cos A)( sin^2 A + cos^2 A + sin A.cos A] / [sin A.cos A (sin A – cos A)]= (sin A – cos A)( 1 + sin A.cos A] / [sin A.cos A (sin A – cos A)]=( 1 + sin A.cos A] / sin A.cos A= 1 + sec A.cosec AProved
plz mαrk αѕ вrαnlíѕt
Answered by
2
Step-by-step explanation:
sinA+1-cosA)/(cosA-1+sinA) =(1+sinA)/cosA
L.H.S.
=[sinA+(1-cosA)]/[sinA-(1-cosA)]
Multiplying by [sinA+(1-cosA)]
=[sinA+(1-cosA)]^2/[sin^2A-(1-cosA)^2]
=[sin^2A+2.sinA.(1-cosA)+(1-cosA)^2]/[(1-cos^2A)-(1-cosA)^2]
=[(1-cos^2A)+2.sinA.(1-cosA) +(1-cosA)^2]/[(1-cosA)(1+cosA) - (1-cosA)^2].
=(1-cosA)[1+cosA+2sinA+1-cosA]/(1-cosA)[1+cosA-1+cosA].
=[2+2sinA]/[2.cosA].
=2(1+sinA)/2.cosA.
Please mark me as a brainliest pleaseeeeeeeee
= (1+sinA)/cosA
Similar questions