prove identities
(sin A +sec A)^2+(cos A+cosec A)^2=(1+sec A cosec A)
Answers
Answered by
3
Answer:
(sin A + sec A)² + (Cos A + Cosec A)²
= Sin² A + sec² A + 2 Sin A Sec A + Cos² A + Cosec² A + 2 Cos A Cosec A
(opening the brackets with identity (a+b)²)
= Sin²A + COs²A + Sec²A + Cosec²A + 2 Sin A SecA + 2 Cos A Cosec A
=1 + [ 1/Cos²A + 1/ Sin²A ] + [ 2 Sin A / Cos A + 2 Cos A / SIn A ]
(sin²A+cos²A=1) and (sec²A=1/cos²A and cosec²A=1/sin²A)
= 1 + (Sin²A + COs²A)/ [Cos²A Sin²A ] + 2 [ SIn² A + Cos²A ] / [ SinA CosA
= 1 + 1/Cos²A 1/Sin²A + 2 1/SinA 1/CosA
= 1 + Sec²A Cosec²A + 2 COsecA Sec A
= (1 + SecA CosecA )²
Similar questions
Hindi,
4 months ago
Social Sciences,
4 months ago
Computer Science,
4 months ago
Biology,
9 months ago
Accountancy,
9 months ago
Math,
1 year ago
Math,
1 year ago