Math, asked by 112344, 1 year ago

prove identity cot power4 -1=cosec power 4-2 cosec power 2

Answers

Answered by darky1
1
mark brainliest if you like
 { \cot }^{4} \alpha  - 1 =  { \csc}^{4} \alpha  - 2 { \csc }^{2} \alpha \\ with \: algebric \: identity \\  {a}^{2}  -  {b}^{2}  = (a + b)(a - b) \\ {( \cot }^{2} \alpha  - 1)( { \cot }^{2} \alpha   + 1)  =  { \csc }^{2} \alpha    ({ \csc}^{2} \alpha  - 2) \\ identity \: 1 +  {cot}^{2} \alpha  =  { \csc}^{2}  \alpha  \\ applying \: we \: get \\  { \csc }^{2} \alpha ( { \cot }^{2}  \alpha  - 1)  =  { \csc }^{2} \alpha    ({ \csc}^{2} \alpha  - 2) \\  ( { \cot }^{2}  \alpha  - 1)  =    ({ \csc}^{2} \alpha  - 2) \\  1 =  { \csc }^{2}  \alpha  -  { \cot \alpha }^{2}  \\ which \: is \: an \: identity
Similar questions