prove identity
where the angle involved acute angle
Answers
cosA-sinA+1/cosA +sinA-1 = cosecA+cotA
Use the formula cot^2A-cosec^2A
LHS- cosA-sinA+1/cosA+sinA-1
divide by sinA on both numerator and denominator
cosA/sinA-sinA/sinA+1/sinA /cosA/sinA-sinA/sinA+1/sinA
cotA-1+cosecA/cotA+1-cosecA
at the place of 1 put above formula
cotA+cosec-(cot^2A-cosec^2A)/cotA-cosecA+1
now put it in a^2-b^2 =(a+b)(a-b)
cotA+cosecA+(cotA-cosecA)(cotA+cosecA)/cotA-cosecA+1
now common taking from numerator
cotA+cosecA(1+cotA-cosecA)/cotA-cosecA+1
Hence it prove cotA+cosecA
cosA-sinA+1/cosA +sinA-1 = cosecA+cotA
Use the formula cot^2A-cosec^2A
LHS- cosA-sinA+1/cosA+sinA-1
divide by sinA on both numerator and denominator
cosA/sinA-sinA/sinA+1/sinA /cosA/sinA-sinA/sinA+1/sinA
cotA-1+cosecA/cotA+1-cosecA
at the place of 1 put above formula
cotA+cosec-(cot^2A-cosec^2A)/cotA-cosecA+1
now put it in a^2-b^2 =(a+b)(a-b)
cotA+cosecA+(cotA-cosecA)(cotA+cosecA)/cotA-cosecA+1
now common taking from numerator
cotA+cosecA(1+cotA-cosecA)/cotA-cosecA+1
Hence it prove cotA+cosecA