Math, asked by parichaydebbarm8789, 1 year ago

Prove,if the diagonals of a c cyclic quadrilateral are perpendicular to each other show that the line passing through the point of intersection of diagonals and midpoint of a side is perpendicular to the opposite side

Answers

Answered by sahajgoyal
49

Proof :  

Given:  

(i) ◻ ABCD is a cyclic quadrilateral

(ii) Diagonals AC and BD intersect at M and AC⊥BD

(iii) M is the mid point of AB

To Prove:

MN ⊥ DC

Proof:

In right angled triangle AOB, AM is the median

∴ OM = AM = MB = 1/2 AB      …. (property of median on the hypotenuse)

∴ ∠MBO  = ∠MOB                                                                       (1)

& ∠MAO = ∠MOA             ….    (Isosceles triangle theorem) …. (2)

∠BOA = 90°                                  …..    (given)

∴ ∠MOB + ∠MOA = 90°                                                          ….(3)

∠MOA = ∠CON               …..    (vertically opposite angles)    …..(4)

∠ABD = ∠ACD                  …..    (angles subtended by the same chord)

i.e. ∠MBO = ∠OCN                                                                 …..(5)

∴ ∠MOB =  ∠ OCN                     …..    from (1) and (5)            .... (6)  

∴ ∠OCN + ∠CON = 90°             …..    from (3), (4) and (6)      ..... (7)

∴ ∠OND = ∠OCN + ∠CON    ….. (Exterior angle of triangle ONC)

                = 90                           …..  from (7)

∴ MN ⊥ DC

Attachments:
Answered by rahuln52003
18

Answer:

Think that the image contains the answer

Step-by-step explanation:

Attachments:
Similar questions