prove it..
1+2+3+4+....... = -1/12
Don't spam....
Answers
Answered by
86
hey there ,,
let us check out the solution ;-
1+2+3+4+.......... = -1/12
_________________________________________
let s = 1+2+3+4+5+6+7
consider , s1 = 1-1+1-1+1-1+1-1...........
now ,
this sum should be 0 or 1
if even than , s1 = 0
but , if odd , s1 = 1
s1 = (1-1+1-1+1-1+1-1.......)
1-s1 = 1-(1-1+1-1+1-1+1-1.......)
1-s1 = s1
so , s1 = 1/2
hmm ,,, for now on , we could agree with s1 = 1/2 .
let , s2 = 1-2+3-4+5-6+7...............
so , s2 = 1-2+3-4+5-6+7-8+-9.........
s2 = 1-2+3-4+5-6+7-8. ( shifted rhs byva unit position )
2s2 = 1-1+1-1+1-1+1......
hence ,
2s2 = s1
Therefore , s = 1/4
let's come to our sum of all natural numbers .
s = 1+2+3+4+5+6+7+8+9.........
s2 = 1-2+3-4+5-6+7-8+9.......
so ,
s-s2 = 4+8+12+16+20
hence ,
s-s2 = 4(1+2+3+4+5+6+7+8.......)
s-s2 = 4s
so ,
-s2 = 3s
And , s = -s2/3 = -1/12
hence ,
sn = -1/12. ( sn = sum of all natural numbers ).
_______________________________________
hope it helps @amrit
be brainly , together we go far ☺♥
let us check out the solution ;-
1+2+3+4+.......... = -1/12
_________________________________________
let s = 1+2+3+4+5+6+7
consider , s1 = 1-1+1-1+1-1+1-1...........
now ,
this sum should be 0 or 1
if even than , s1 = 0
but , if odd , s1 = 1
s1 = (1-1+1-1+1-1+1-1.......)
1-s1 = 1-(1-1+1-1+1-1+1-1.......)
1-s1 = s1
so , s1 = 1/2
hmm ,,, for now on , we could agree with s1 = 1/2 .
let , s2 = 1-2+3-4+5-6+7...............
so , s2 = 1-2+3-4+5-6+7-8+-9.........
s2 = 1-2+3-4+5-6+7-8. ( shifted rhs byva unit position )
2s2 = 1-1+1-1+1-1+1......
hence ,
2s2 = s1
Therefore , s = 1/4
let's come to our sum of all natural numbers .
s = 1+2+3+4+5+6+7+8+9.........
s2 = 1-2+3-4+5-6+7-8+9.......
so ,
s-s2 = 4+8+12+16+20
hence ,
s-s2 = 4(1+2+3+4+5+6+7+8.......)
s-s2 = 4s
so ,
-s2 = 3s
And , s = -s2/3 = -1/12
hence ,
sn = -1/12. ( sn = sum of all natural numbers ).
_______________________________________
hope it helps @amrit
be brainly , together we go far ☺♥
MOSFET01:
Marvelous ...
Answered by
50
The answer is explained in the attachment.
Hope it helps!
Attachments:
Similar questions