Math, asked by joy576691, 7 months ago

Prove it (1+cosec A) / cosec A = sin^2A/(1-sin A)


Note :- First find the value of A then prove that
(1+cosec A) / cosec A = sin^2A/(1-sin A) (Putting the value of A)

Answers

Answered by Anonymous
61

\;\;\underline{\textbf{\textsf{ Given   :-}}}

 \\

\sf\dashrightarrow   \dfrac{1 + cosecA}{cosecA} = \dfrac{sin^2A}{1 - sinA}

 \\

\;\;\underline{\textbf{\textsf{ To Prove  :-}}}

 \\

• L.H.S = R.H.S

 \\

\;\;\underline{\textbf{\textsf{ Proof  :-}}}

 \\

\bf\underline{\green{\:\:\:\:\:\:\:\:A.T.Q:-\:\:\:\:\:\:\:}}

 \\

We need to find the value of A.

 \\

\sf  \dashrightarrow \dfrac{1 + cosecA}{cosecA} = \dfrac{sin^2A}{1 - sinA}\\\\

\sf  \dashrightarrow \dfrac{1}{cosecA} + \dfrac{cosecA}{cosecA} = \dfrac{sin^2A}{1 - sinA}\\\\

\sf \dashrightarrow sinA + 1 = \dfrac{sin^2A}{1 - sinA}\\\\

\sf  \dashrightarrow (sinA + 1)(1 - sinA) = sin^2A\\\\

\sf \dashrightarrow (1)^2 - (sinA)^2 = sin^2A\\\\

\sf  \dashrightarrow 1 - sin^2A = sin^2A\\\\

\sf \dashrightarrow  1 = sin^2A + sin^2A\\\\

\sf \dashrightarrow  1 = 2sin^2A\\\\

\sf  \dashrightarrow 2sin^2A = 1\\\\

\sf  \dashrightarrow sin^2A = \dfrac{1}{2}\\\\

\sf\dashrightarrow  sinA = \sqrt{\dfrac{1}{2}}\\\\

\sf \dashrightarrow  sinA = \dfrac{1}{\sqrt{2}}\\\\

\sf \dashrightarrow  A = sin^{-1} \ \dfrac{1}{\sqrt{2}}\\\\

\sf \dashrightarrow  A = 45 ^\circ\\\\

\;\;\underline{\textbf{\textsf{ Hence-}}}

 \\\\

\underline{\textsf{ Value of A  is   \textbf{45°}}}.

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

 \\

Again, we need to prove L.H.S and R.H.S

 \\

\sf\dashrightarrow \dfrac{1 + cosecA}{cosecA} = \dfrac{sin^2A}{1 - sinA}\\

 \\\\

L.H.S

 \\

\sf \dashrightarrow  \dfrac{1 + cosec45^\circ}{cosec45^\circ}\\\\

\sf \dashrightarrow \dfrac{1 + \sqrt{2}}{\sqrt{2}}\\\\

\sf\dashrightarrow \dfrac{1 + \sqrt{2}}{\sqrt{2}} \times \dfrac{\sqrt{2}}{\sqrt{2}}\\\\

\sf  \dashrightarrow \dfrac{\sqrt{2} + (\sqrt{2})^2}{(\sqrt{2})^2}\\\\

\sf  \dashrightarrow \dfrac{\sqrt{2} + 2}{2}\\

 \\

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

R.H.S

 \\

\sf\dashrightarrow \dfrac{sin^2A}{1 - sinA}\\

\sf \dashrightarrow  \dfrac{sin^245^\circ}{1 - sin45^\circ}\\\\

\sf  \dashrightarrow \dfrac{\bigg(\dfrac{1}{\sqrt{2}}\bigg)^2}{1 - \bigg(\dfrac{1}{\sqrt{2}}\bigg)}\\\\

\sf \dashrightarrow \dfrac{\dfrac{1}{2}}{\bigg(\dfrac{\sqrt{2} - 1}{\sqrt{2}}\bigg)}\\\\

\sf \dashrightarrow \dfrac{1}{2} \times \dfrac{\sqrt{2}}{\sqrt{2} - 1}\\\\

\sf  \dashrightarrow \dfrac{\sqrt{2}}{2(\sqrt{2} - 1)}\\\\

\sf\dashrightarrow  \dfrac{\sqrt{2}}{2\sqrt{2} - 2}\\\\

\sf \dashrightarrow \dfrac{\sqrt{2}}{2\sqrt{2} - 2} \times \dfrac{2\sqrt{2} + 2}{2\sqrt{2} + 2}\\\\

\sf  \dashrightarrow \dfrac{\sqrt{2}(2\sqrt{2} + 2)}{(2\sqrt{2})^2 - (2)^2}\\\\

\sf  \dashrightarrow \dfrac{ \sqrt{2}(2\sqrt{2}) + \sqrt{2}(2)}{(4 \times 2) - 4}\\\\

\sf \dashrightarrow \dfrac{4 + 2\sqrt{2}}{8 - 4}\\\\

\sf\dashrightarrow \dfrac{2(2 + \sqrt{2})}{4}\\\\

\sf\dashrightarrow   \dfrac{2 + \sqrt{2}}{2}\\\\

\;\;\underline{\textbf{\textsf{Hence -}}}

 \\

 \\

 \leadsto  \  {\boxed{\tt{LHS = RHS}}}

 \\

 \therefore{ \underline{\bf{(Proved)}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

\;\;\underline{\textbf{\textsf{ Know More :-}}}

__________________________________________________________________

\begin{array}{ |c |c|c|c|c|c|} \bf\angle A &   \bf{0}^{ \circ} &  \bf{30}^{ \circ} &   \bf{45}^{ \circ}  &  \bf{60}^{ \circ} &   \bf{90}^{ \circ}  \\ \\ \rm sin A & 0 & \dfrac{1}{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{ \sqrt{3} }{2} &1 \\  \\ \rm cos \: A & 1 & \dfrac{ \sqrt{3} }{2}& \dfrac{1}{ \sqrt{2} } & \dfrac{1}{2} &0 \\  \\ \rm tan A & 0 & \dfrac{1}{ \sqrt{3} }& 1 &  \sqrt{3}  & \rm Not \: De fined \\  \\ \rm cosec A &  \rm Not \: De fined & 2&  \sqrt{2}  & \dfrac{2}{ \sqrt{3} } &1 \\  \\ \rm sec A & 1 & \dfrac{2}{ \sqrt{3} }&  \sqrt{2}  & 2 & \rm Not \: De fined \\  \\ \rm cot A & \rm Not \: De fined &  \sqrt{3} & 1  &  \dfrac{1}{ \sqrt{3} } & 0 \end{array}

_______________________________________________________________________

Answered by rohan5639
0

Answer:

Heya brainlist follow me

Similar questions