Math, asked by shreyas7129, 11 months ago

Prove it: (1/tan3A-tanA)-(1/cot3A+cotA)=cot2A

Answers

Answered by ᏢɾᎥɳcҽ
343

Given:

 \boxed{ \boxed{ \tt\dfrac{1}{ \tan3A -  \tan A}  -  \dfrac{1}{ \cot3A -  \cot A} }}

To Prove:

 \boxed{\boxed{\tt \:  \cot2A}}

Solution:

L.H.S :

 = \tt\dfrac{1}{ \tan3A -  \tan A}  -  \dfrac{1}{ \cot3A -  \cot A}

 = \tt\dfrac{1}{ \tan3A -  \tan A}  -  \dfrac{1}{  \dfrac{1}{ \tan3A}  -  \dfrac{1}{tanA} }

 = \tt\dfrac{1}{ \tan3A -  \tan A}  -  \dfrac{1}{  \dfrac{\tan A - \tan3 A}{ \tan3A .\tan A}}

= \tt\dfrac{1}{ \tan3A -  \tan A}  -  \dfrac{tan3A.tanA}{tanA -tan3A}

= \tt\dfrac{1}{ \tan3A -  \tan A}   +  \dfrac{tan3A.tanA}{tan3A -tanA}

= \tt\dfrac{1 + tan3A.tanA}{ \tan3A -  \tan A}

= \tt \dfrac{ \dfrac{1}{tan3A - tanA} }{1 + tan3A.tanA}  \\

  = \tt \dfrac{1}{tan(3A - A )}  \\

 =  \tt\dfrac{1}{  \tan 2A}

 =  \tt{ \cot2A} =  [R.H.S]

\mathbb{ \red{M} \rm  ore  \: \mathbb  {\color{cyan}{T}}rig \green{o}nom  {\color{violet}{e}}tric   \: \mathbb  \orange{I}den {\color{teal}{t}}itie  {\color{purple}{s}}} \longrightarrow

\boxed{\begin{array}{} \rm \sin(a + b) =  \sin a. \cos b + \cos a. \sin b   \\ \rm \sin(a  -  b) =  \sin a. \cos b  - \cos a. \sin b \\ \rm \cos(a + b) =   \cos a. \cos b  -  \sin a. \sin b  \\ \rm \cos(a  -  b) =   \cos a. \cos b   +   \sin a. \sin b \end{array}}

\boxed{\begin{array}{} \rm  \tan(a + b) =  \dfrac{ \tan a +  \tan b}{1 -  \tan a. \tan b  }  \\  \\\rm  \tan(a  -  b) =  \dfrac{ \tan a  -   \tan b}{1  +   \tan a. \tan b  }  \end{array}}

  • Sin θ = 1/Csc θ
  • Csc θ = 1/Sin θ
  • Cos θ = 1/Sec θ
  • Sec θ = 1/Cos θ
  • tan θ = 1/Cot θ
  • Cot θ = 1/tan θ

Pythagorean Trigonometric Identities:

  • sin² θ + cos² θ = 1
  • 1+tan² θ= sec² θ
  • cosec²θ = 1 + cot²θ

Ratio Trigonometric Identities :

  • tan θ = Sin θ/Cos θ
  • Cot θ = Cos θ/Sin θ

Similar questions