Math, asked by mohsin2780, 1 year ago

prove it ..............

.​

Attachments:

Answers

Answered by ihrishi
1

Step-by-step explanation:

 \frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n  + 1} - {2}^{n}}  =  \frac{3}{2}  \\LHS =  \frac{ {2}^{n} +  {2}^{n - 1}  }{ {2}^{n  + 1} - {2}^{n}} \\  = \frac{ {2}^{n} +  {2}^{n} \times  {2}^{ - 1}   }{ {2}^{n}  \times  {2}^{1} - {2}^{n}} \\  =  \frac{ {2}^{n} (1 +  \frac{1}{2}) }{ {2}^{n} (2 - 1)}   \\  =  \frac{ \frac{2 + 1}{2} }{1}  \\  =  \frac{3}{2}  \\  = RHS \\

Thus proved.

Similar questions