Math, asked by themystery99, 11 months ago

Prove it!

.........!​

Attachments:

Answers

Answered by IamIronMan0
4

Answer:

 \cos {}^{3} (x) \cos(3x)  +  \sin {}^{3} (x)  \sin(3x)  \\  \\  =\cos {}^{3} (x)  \{ 4\cos {}^{3} (x) - 3 \cos(x)  \}  \\  +  \sin {}^{3} (x)  (3\sin(x)   - 4 \sin {}^{3} (x) ) \\  \\  = 4 \cos {}^{6} (x)  + 3 { \sin {}^{4} (x) }\\ - 3 \cos {}^{4} (x)  - 4 \sin {}^{6} (x)  \\  \\ let \:  \: y =  \cos {}^{2} (x)   \\ \implies \:  \sin {}^{2} (x)  =1 -  \cos {}^{2} (x)   = 1 - y \\  \\ put \: values \: in \:  \: equation \\  \\  = 4 {y}^{3}  + 3(1 - y) {}^{2}  \\- 3 {y}^{2}  - 4(1 - y) {}^{3}  \\  \\  = 4( {y}^{3}  - (1 - y) {}^{3} ) \\+ 3( {(1 - y)}^{2}  - (y) {}^{2} ) \\  \\  do \:  \: full \:  \: expansion \:  \: or \:  \: use \:  \\ basic \:  \: identities \:  \\  \\ = 4(y - 1  + y)( {y}^{2}  +  {(1 - y)}^{2}  + y(1 - y)) + 3( 1 - y  - y)(1 - y+ y) \\  \\  = 4(2y - 1)( {y}^{2}  +  {y}^{2}  + 1 - 2y + y -  {y}^{2} ) + 3(1 - 2y) \\  \\  = (2y - 1) \{4({y}^{2}  - y + 1 \}  - 3)  \\  \\  = (2y - 1)(4 {y}^{2}  - 4y + 1) \\  \\  = (2y - 1)(2y - 1) {}^{2}  \\  \\  =  (2y - 1) {}^{3} \\  \\ since \:  \: y =  \cos {}^{2} (x)  \\  \\  = (2 \cos {}^{2} (x)  - 1) {}^{2}  \\  \\  = \cos {}^{3} (2x)  \\  \\  = rhs

Answered by sanjeevravish321
0

Answer:

not interested

Step-by-step explanation:

The answer is here,

Given that,

= > \: \frac{a + ib}{c + id} = p + iq

We can replace the " i " as " -i ".

= > \frac{a - ib}{c - id} = p - iq

Similar questions