prove it 2(AD2+BE2+CF2)=3BC2
Answers
Solution:
Given: In Δ ABC , AD , BE and CF are medians. Also, ∠A=90°
To prove: 2(AD²+BE²+CF²)=3 BC²
Construction: Draw, AM ⊥BC, BN ⊥CA,and CP⊥ AB.
Proof: In right Δ AMD, ΔAMC, and Δ AMB, and ΔABC, using Pythagoras theorem
1. AD²=AM²+MD²
2. AC²= AM²+MC²
3. AB²= AM²+MB²
4.BC²= AB²+AC²
equation(2) +equation (3) - 2 × equation (1)
AB²+AC²-2 AD²= AM²+MB²+AM²+MC²-2 AM²-2 MD²
=MB² +MC²-2 MD²
=(MB+MC)²-2 MB × MC -2 MD²
= BC² -2(BD²-MD²)-2 MD²→→As, MB=(BD-MD), and MC=(MD+CD), also AD is median, so BD=CD
AB²+AC²-2 AD²= BC² - 2 BD²
---------(4)
Similarly, AB²+BC²-2 BE² ---------(5)
CB²+AC²-2 CF² ---------(6)
Adding (4),(5) and (6)
Hence proved.
look that attachments out ..
hope it helps ;)