Math, asked by Anonymous, 8 months ago

Prove it............​

Attachments:

Answers

Answered by Anonymous
7

Answer:

LHS=

 \frac{tanA}{1 + secA}  -  \frac{tanA}{1 - secA}  = tanA(1 - secA - 1 - secA)   \\  \frac{tanA( - 2secA)}{1 - {sec}^{2} A}  =  \frac{2tanA \times secA}{( {sec}^{2} A - 1)}   \:  \:  \:  \:[{(a + b)(a - b) =  {a}^{2}  -  {b}^{2}}] \\  \frac{2tanA \times secA}{ {tan}^{2}A }  \\   \: { {sec}^{2} A -  {tan}^{2} A = 1} \\  \frac{2secA}{tanA}  =  \frac{2}{sinA}  = 2cosecA = rhs

Answered by StrangeStark
7

Answer:

\huge\mathfrak{\color{orange}{\underline{\underline{Answer♡}}}}

\huge\underline\mathrm{To Prove :}

Step-by-step explanation:

 \frac{tan \: a}{1 + sec \: a} -  \frac{tan \: a}{1 - sec \: a}   = 2cosec \: a

Taking L. H. S =

 \frac{tan \: a}{1 + seca}  -  \frac{tan \: a}{1 - sec \: a}

Taking LCM of the denominators

 \frac{tan \: a(1 - sec \: a )- tan \: a(1 + sec \: a)}{(1 + sec \: a)(1 - sec \: a)}

 \frac{(tan \: a - tan \: a \: sec \: a) - (tan \: a + tan \: a \: sec \: a)}{ {(1)}^{2}  -  {(sec \: a})^{2} }

(tan A tan a sec a tan a tan a sec a) / 1sec² a

(2tan a sec a) / tan²a

2sec a/ tan a

2×1/cos a / sin a / cos a

2×1/sin a

2cosec a. = R. H. S

\huge\mathfrak{\color{</u></strong><strong><u>R</u></strong><strong><u>E</u></strong><strong><u>D</u></strong><strong><u>}{\underline{\underline{</u></strong><strong><u>P</u></strong><strong><u>R</u></strong><strong><u>O</u></strong><strong><u>V</u></strong><strong><u>E</u></strong><strong><u>D</u></strong><strong><u>♡}}}}

&lt;marquee&gt;HEARTLESS boY♡

Similar questions