Math, asked by Anonymous, 10 months ago

prove it all the friends​

Attachments:

Answers

Answered by aaravshrivastwa
4

Taking L.H.S,

= (1+tan²A/1+cot²A)

= (1+tan²A/1+1/tan²A)

= (1+tan²A)/(tan²A+1/tan²A)

= tan²A

Taking R.H.S,

= (1-tanA/1-cotA)²

= [(1-tanA)/(1-1/tanA)]²

= [(1-tanA)/(tanA-1/tanA)]²

= [(1-tanA)/-(1-tanA/tanA)]²

= (-tanA)²

= tan²A

Henceforth,

L.H.S = R.H.S

Answered by Anonymous
2

Answer:

Inbox...kr

Taking L.H.S,

= (1+tan²A/1+cot²A)

= (1+tan²A/1+1/tan²A)

= (1+tan²A)/(tan²A+1/tan²A)

= tan²A

Taking R.H.S,

= (1-tanA/1-cotA)²

= [(1-tanA)/(1-1/tanA)]²

= [(1-tanA)/(tanA-1/tanA)]²

= [(1-tanA)/-(1-tanA/tanA)]²

= (-tanA)²

= tan²A

Henceforth,

L.H.S = R.H.S

Similar questions