Math, asked by swayamprava, 1 year ago

prove it by mathematical induction​

Attachments:

Answers

Answered by sivaprasath
9

Step-by-step explanation:

Given :

To prove that,

7 + 77 + 777 + ... 7..(n \ terms) = \frac{7}{81} (10^{n+1} - 9n - 10)

By mathematical induction.

Proof :

let  P(n) =7 + 77 + 777 + ... 7..(n \ terms) = \frac{7}{81} (10^{n+1} - 9n - 10)

If n = 1,

P(1) = 7= \frac{7}{81} (10^{1+1} - 9(1) - 10)}

P(1) = 7= \frac{7}{81} (100 - 9 - 10)}

P(1) = 7= \frac{7}{81} (81)}

P(1) = 7= 7

⇒ LHS = RHS,

Hence, P(n) is true for n = 1,

Let P(n) be n = k,

Then,

7 + 77 + 777 + ... 7..(k \ terms) = \frac{7}{81} (10^{k+1} - 9k - 10)

be true,,

To Prove :

P(n) for n  = k + 1,

i.e.,

7 + 77 + 777 + ... 7..(k+1 \ terms) = \frac{7}{81} (10^{(k+1) + 1} - 9(k+1) - 10)

Proof :

LHS = [7 + 77 + 777 + ... 7..(k \ terms)] + 7..(k+1 \ terms)

= \frac{7}{81} (10^{k+1} - 9k - 10) + 7..(k+1 \ terms)

= \frac{7}{81} (10^{k+1} - 9k - 10) +(\frac{7}{9}) 9..(k+1 \ terms)

= \frac{7}{81} (10^{k+1} - 9k - 10) +(\frac{7}{9}) (10 - 1)..(k+1 \ terms)

= \frac{7}{81} (10^{k+1} - 9k - 10) +(\frac{7}{9})(10^{k+1} - 1)

= \frac{7}{81} (10^{k+1} - 9k - 10) +(\frac{7}{9 \times 9})(9)[10^{k+1} - 1]

= \frac{7}{81} (10^{k+1} - 9k - 10) +(\frac{7}{81})[9 \times 10^{k+1} - 9]

= \frac{7}{81} (10^{k+1} - 9k - 10 + [9 \times 10^{k+1} - 9])

= \frac{7}{81} ([9 +1]10^{k+1} - 9(k + 1) - 10)

= \frac{7}{81} ([10]10^{k+1} - 9(k + 1) - 10)

= \frac{7}{81} (10^{k+2} - 9(k + 1) - 10)

= \frac{7}{81} (10^{(k+1) + 1} - 9(k + 1) - 10) = RHS

Hence, proved.

Similar questions