Prove it cos^4 - sin^4 = cos2A
Answers
Answered by
19
Prove it cos^4 - sin^4 = cos2A
LHS = cos^4 A - sin^4A
= (cos²A + sin²A) (cos²A - sin²A)
= 1(cos2A) [°•° cos²A + sin²A = 1]
= cos2A. [cos²A - sin²A = cos2A]
LHS = RHS
Answered by
5
Answer:
Step-by-step explanation:
LHS = cos^4 A - sin^4A
= (cos²A + sin²A) (cos²A - sin²A)
= 1(cos2A) [°•° cos²A + sin²A = 1]
= cos2A. [cos²A - sin²A = cos2A]
LHS = RHS
hence, prooved.
Similar questions