Math, asked by rauhanika658, 1 year ago

Prove it cos^4 - sin^4 = cos2A

Answers

Answered by Swarnimkumar22
19
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}


Prove it cos^4 - sin^4 = cos2A


\bold{\underline{Answer-}}


LHS = cos^4 A - sin^4A

= (cos²A + sin²A) (cos²A - sin²A)

= 1(cos2A) [°•° cos²A + sin²A = 1]

= cos2A. [cos²A - sin²A = cos2A]


LHS = RHS
Answered by Anonymous
5

Answer:

Step-by-step explanation:

LHS = cos^4 A - sin^4A

= (cos²A + sin²A) (cos²A - sin²A)  

= 1(cos2A) [°•° cos²A + sin²A = 1]

= cos2A. [cos²A - sin²A = cos2A]

LHS = RHS

hence, prooved.

Similar questions