Math, asked by rajantiwari852, 1 year ago

Prove it

cos(A+45°) cos(A-45°)= 1/2 (cos²A-sin²A)

Answers

Answered by Swarnimkumar22
6
\bold{\huge{Hay!!}}

\bold{Dear\:user!!}

\bold{\underline{Question-}}

Prove it

cos(A+45°) cos(A-45°)= 1/2 (cos²A-sin²A)

\bold{\underline{Answer-}}

LHS = cos(A+45°)cos(A-45°)

= (cosA cos45°- sinA sin45°) (cosA cos45° + sinA sin 45°)

 = (cosA \times \frac{1}{ \sqrt{2} } - sinA \: \times \frac{1}{ \sqrt{2} } )(cosA \: \times \frac{1}{ \sqrt{2} } + sinA \times \frac{1}{ \sqrt{2} } )

 = \frac{1}{ \sqrt{2} } (cosA - sinA). \frac{1}{ \sqrt{2} } (cosA + sinA)

°•° (a+b)(a-b) = a² - b²

 = \frac{1}{2} ( {cos}^{2}A - sin {}^{2} A)
Answered by ramji46
3
the solution is here
pls mark me brainlist
Attachments:
Similar questions