Math, asked by kabhita577, 8 months ago

Prove it cos (a) -sin (a) +1 / cos (a) + sin (a) -1 = cosec ( a) + cot (a) ​

Answers

Answered by Anonymous
6

Step-by-step explanation:

We need to prove 1+cosA1−cosA=cosecA−cotA

By taking L.H.S. =1+cosA1−cosA

                           =1+cosA1−cosA×1−cosA1−cosA

                           =1−cos2A(1−cosA)2

                           =sin2A(1−cosA)2

                           =sinA1−cosA

                           =sinA1−sinAcosA

                           =cosecA−cotA= R.H.S.

Hope This will help you  

Answered by Anonymous
38

\small\bold{\underline{\sf{\green{Given:-}}}}

  \\ \implies { \bold{ \dfrac{ \cos(a) -  \sin(a) + 1}{ \cos(a)  +  \sin(a)  - 1}  = cosec(a) +  \cot(a) }} \\

\small\bold{\underline{\sf{\green{To\:Prove:-}}}}

  \\ \implies { \bold{ \dfrac{ \cos(a) -  \sin(a) + 1}{ \cos(a)  +  \sin(a)  - 1}  = cosec(a) +  \cot(a) }} \\

\small\bold{\underline{\sf{\green{Solution:-}}}}

L.H.S

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos(a) -  \sin(a) + 1}{ \cos(a)  +  \sin(a)  - 1}  }} \\

( Rationalization of denominator)

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos(a) -  \sin(a) + 1}{ \cos(a)  +  \sin(a)  - 1}  \times  \dfrac{ \cos(a) +  \sin(a)  + 1}{\cos(a) +  \sin(a)  + 1}  }} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \{ \cos(a) -  \sin(a) + 1 \} \{\cos(a) +  \sin(a)  + 1 \}}{  \{\cos(a)  +  \sin(a) \}^{2}   -  {(1)}^{2} }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos^{2} (a)  +  \sin(a) \cos(a)  +  \cos(a)  -  \sin(a) \cos(a) -  \sin^{2} (a)  -  \sin(a) + \cos(a) +  \sin(a)  + 1}{ \cos^{2} (a)  +  \sin^{2} (a) + 2 \sin(a) \cos(a)  - 1}}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos^{2} (a) + 2 \cos(a)  -  \sin^{2} (a) + 1}{ 1 + 2 \sin(a) \cos(a)  - 1}}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos^{2} (a) + 2 \cos(a)  -  \sin^{2} (a) + 1}{2 \sin(a) \cos(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos^{2} (a) + 2 \cos(a)  - (1 -  \cos^{2} (a)) + 1}{2 \sin(a) \cos(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos^{2} (a) + 2 \cos(a)  - 1  +  \cos^{2} (a) + 1}{2 \sin(a) \cos(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{2 \cos^{2} (a) + 2 \cos(a)}{2 \sin(a) \cos(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{ \cos (a) + 1}{ \sin(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{ \dfrac{1}{ \sin(a) }  +  \dfrac{ \cos (a) }{ \sin(a) }}} \\

  \\  \:  \:  =  \:  \:  { \bold{cosec(a) +  \cot(a) }} \\

= R.H.S

Hence,

L.H.S = R.H.S

( Proved)

Similar questions