Math, asked by fghjlDivyansh11, 1 year ago

Prove it:cot A-tan A=2 cos²A-1/sin A cos A

Answers

Answered by KRIT111
47
CotA- tanA

=cosA/sinA- sinA/cosA

=cos^2A-sin^2A)/sinAcosA

=cos^2A-(1-cos^2A)/sinAcosA

=cos^2A-1+cos^2A/sinAcosA

=2cos^2A-1/sinAcosA

fghjlDivyansh11: Thank you
Answered by mysticd
62

Answer:

 cotA-tanA =\frac{2cos^{2}A-1}{sinAcosA}

Step-by-step explanation:

LHS = cotA-tanA

=\frac{cosA}{sinA}-\frac{sinA}{cosA}

= \frac{cos^{2}A-sin^{2}A}{sinAcosA}

=\frac{cos^{2}A-(1-cos^{2}A)}{sinAcosA}

= \frac{cos^{2}A-1+cos^{2}A}{sinAcosA}

=\frac{2cos^{2}A-1}{sinAcosA}

=$RHS$

Therefore,

 cotA-tanA =\frac{2cos^{2}A-1}{sinAcosA}

••••

Similar questions