Math, asked by rauhanika658, 1 year ago

prove it cotA - tanA = 2cot2A

Answers

Answered by Swarnimkumar22
37
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

prove it cotA - tanA = 2cot2A



\bold{\underline{Answer-}}


LHS = cotA - tanA

 =  \frac{cos \: a}{sin \: a}  -  \frac{sin \: a}{cos \: a}  \\  \\  =  \frac{ {cos}^{2} a -  {sin}^{2}a }{sin \: a \: cos \: a}  \\  \\  \\  =  \frac{cos \: 2a}{sin \: a \: cos \: a}

multiplying with 2

 =  \frac{2cos \: 2a}{2sin \: a \: cos \: a}  \\  \\  \\  =  \frac{2cos2a}{sin2a}  \\  \\  \\  = 2cot2a


LHS = RHS

mitakshi1: good
Swarnimkumar22: Thanks
Answered by SamiranManna
5

Step-by-step explanation:

Hope it helps you

If you like it then please mark it as brainliest answer and please follow me

Attachments:
Similar questions