Math, asked by Anonymous, 10 months ago

Prove it :

i]

2{sin^6(x) + cos^6(x)}+1=3{sin^4(x)+cos^4x}

Answers

Answered by Anonymous
23

To Prove:

\sf 2({sin}^{6}x + {cos}^{6}x ) +1 = 3({sin}^{4}x + {cos}^{4}x)

Proof:

LHS:

\sf \implies 2({sin}^{6}x + {cos}^{6}x ) +1

\sf \implies 2[{({sin}^{2}x + {cos}^{2}x )}^{3} - 3{sin}^{2}x \times {cos}^{2}({sin}^{2}x + {cos}^{2})] +1

\sf \implies 2[{1}^{3} - 3{sin}^{2}x \times {cos}^{2}x(1)] +1

 \sf \implies 2[1- 3{sin}^{2}x \times {cos}^{2}x] +1

 \sf \implies 2- 6{sin}^{2}x \times {cos}^{2}x+1

 \sf \implies 3 - 6{sin}^{2}x \times {cos}^{2}x

 \sf \implies 3(1 -2 {sin}^{2}x \times {cos}^{2}x)

\sf \implies 3[{({sin}^{2}x + {cos}^{2}x)}^{2}-2 {sin}^{2}x \times {cos}^{2}x]

 \sf \implies 3({sin}^{4}x + {cos}^{4}x + \cancel{2 {sin}^{2}x \times {cos}^{2}x}-\cancel{2 {sin}^{2}x \times {cos}^{2}x}

 \sf \implies 3({sin}^{4}x + {cos}^{4}x)

RHS:

 \sf \implies 3({sin}^{4}x + {cos}^{4}x)

Hence Proved!

Answered by rishu6845
12

Answer:

plzzz give me brainliest ans and plzzzz follow me

Attachments:
Similar questions