Math, asked by sahilverma20, 10 months ago

prove it, LHS=RHS. plz slove this......​

Attachments:

Answers

Answered by vijayapravallikapatt
1

LHS

(CosecA - SinA) (SecA - CosA)

CosecA = 1/SinA

SecA = 1/CosA

(1/SinA - SinA) (1/CosA - CosA)

(Cos^2A)(Sin^2A)/(SinA)(CosA)

(SinA)(CosA)

RHS

1/(TanA + CotA)

TanA = SinA/CosA

CotA = CosA/SinA

1/[(SinA/CosA)+(CosA/SinA)]

1/[(Sin^2A + Cos^2A) /(SinA)(CosA)]

Since from identity

Sin^2A + Cos^2A = 1

(SinA)(CosA)/1

(SinA)(CosA)

We prove that LHS = RHS

Hope that it is helpful to you

If it is helpful to you

Add my answer to

Brainliest

and

Follow me

Similar questions