prove it, LHS=RHS. plz slove this......
Attachments:
Answers
Answered by
1
LHS
(CosecA - SinA) (SecA - CosA)
CosecA = 1/SinA
SecA = 1/CosA
(1/SinA - SinA) (1/CosA - CosA)
(Cos^2A)(Sin^2A)/(SinA)(CosA)
(SinA)(CosA)
RHS
1/(TanA + CotA)
TanA = SinA/CosA
CotA = CosA/SinA
1/[(SinA/CosA)+(CosA/SinA)]
1/[(Sin^2A + Cos^2A) /(SinA)(CosA)]
Since from identity
Sin^2A + Cos^2A = 1
(SinA)(CosA)/1
(SinA)(CosA)
We prove that LHS = RHS
Hope that it is helpful to you
If it is helpful to you
Add my answer to
Brainliest
and
Follow me
Similar questions