prove it, LHS=RHS. plz slove this......
Attachments:
Answers
Answered by
0
1-tan = tan²A because 1+tan² A divided by 1+cot²A
Answered by
0
Step-by-step explanation:
From trigonometric identity we know,
- Sec^2A-tan^2A=1
- Cosec ^2A-Cot^2A=1
LHS: Sec^2A/Cosec^2A=tan^2
(1/cos^A)/(1/sin^2A) =tan^2A [sec^2A=1/cos^2A and cosec^2A=1/sin^2A]
Sin^2A/cos^2A=tan^2A
tan^2A=tan^2A (sin^2A/ cos^2A=tan^2A)
RHS: [(1-tanA)/(1-1/tanA)] ^2 {cotA=1/tanA]
[(1-tanA)/(tanA-1/tanA)]^2
[(1-tanA×tanA)/(tanA-1)]^2
[(tanA-1)×(-tanA)/(tanA-1)]^2
Now here (tanA-1),and again (tanA-1) cancel each other
(-tanA) ^2
tan^2A {HENCE PROVED}
PLZZZZZZZZZZZZZZZZZZ MARK IT THE BRAINLIEST
ND FOLLOW ME
IN TURN I WILL FOLLOW U 2
Similar questions
Math,
5 months ago
Computer Science,
5 months ago
Social Sciences,
5 months ago
Math,
10 months ago
Math,
10 months ago
Social Sciences,
1 year ago