Math, asked by sahilverma20, 10 months ago

prove it, LHS=RHS. plz slove this......​​

Attachments:

Answers

Answered by SahityamChakrabortty
0

1-tan = tan²A because 1+tan² A divided by 1+cot²A

Answered by neeturajsingh8138
0

Step-by-step explanation:

From trigonometric identity we know,

  • Sec^2A-tan^2A=1
  • Cosec ^2A-Cot^2A=1

LHS: Sec^2A/Cosec^2A=tan^2

(1/cos^A)/(1/sin^2A) =tan^2A [sec^2A=1/cos^2A and cosec^2A=1/sin^2A]

Sin^2A/cos^2A=tan^2A

tan^2A=tan^2A (sin^2A/ cos^2A=tan^2A)

RHS: [(1-tanA)/(1-1/tanA)] ^2 {cotA=1/tanA]

[(1-tanA)/(tanA-1/tanA)]^2

[(1-tanA×tanA)/(tanA-1)]^2

[(tanA-1)×(-tanA)/(tanA-1)]^2

Now here (tanA-1),and again (tanA-1) cancel each other

(-tanA) ^2

tan^2A {HENCE PROVED}

PLZZZZZZZZZZZZZZZZZZ MARK IT THE BRAINLIEST

ND FOLLOW ME

IN TURN I WILL FOLLOW U 2

Similar questions