prove it.....please.....
Answers
Answered by
2
(x+iy)13=a+ib(x+iy)13=a+ib
To prove the second part:
=>(x+iy)=(a+ib)3=a3+3a2(ib)+3a(ib)2+(ib)3=(a3−3ab2)+i(3a2b−b3)=>(x+iy)=(a+ib)3=a3+3a2(ib)+3a(ib)2+(ib)3=(a3−3ab2)+i(3a2b−b3)
Comparing real parts of the equation, x=a3−3ab2−−(1)x=a3−3ab2−−(1)
=>xa=a2−3b2−−(2)=>xa=a2−3b2−−(2)
Comparing imaginary parts of the equation, y=3a2b−b3−−(3)y=3a2b−b3−−(3)
=>yb=3a2−b2−−(4)=>yb=3a2−b2−−(4)
=>=>Equation (2)(2) + Equation (4)(4) = xa+yb=4a2−4b2=4(a2−b2)xa+yb=4a2−4b2=4(a2−b2)
To prove the first part:
Let us begin with RHS of the first equation.
(a−ib)3=a3−3a2(ib)+3a(ib)2−(ib)3(a−ib)3=a3−3a2(ib)+3a(ib)2−(ib)3
=>(a−ib)3=(a3−3ab2)−i(3a2b−b3)—(5)=>(a−ib)3=(a3−3ab2)−i(3a2b−b3)—(5)
From (1)(1), a3−3ab2=xa3−3ab2=x
From (3)(3), 3a2b−b3=y3a2b−b3=y
Therefore, (5)=>(a−ib)3=x−iy(5)=>(a−ib)3=x−iy
=>(a−ib)=(x−iy)13=>(a−ib)=(x−iy)13
Thus proved.
hope it helps
To prove the second part:
=>(x+iy)=(a+ib)3=a3+3a2(ib)+3a(ib)2+(ib)3=(a3−3ab2)+i(3a2b−b3)=>(x+iy)=(a+ib)3=a3+3a2(ib)+3a(ib)2+(ib)3=(a3−3ab2)+i(3a2b−b3)
Comparing real parts of the equation, x=a3−3ab2−−(1)x=a3−3ab2−−(1)
=>xa=a2−3b2−−(2)=>xa=a2−3b2−−(2)
Comparing imaginary parts of the equation, y=3a2b−b3−−(3)y=3a2b−b3−−(3)
=>yb=3a2−b2−−(4)=>yb=3a2−b2−−(4)
=>=>Equation (2)(2) + Equation (4)(4) = xa+yb=4a2−4b2=4(a2−b2)xa+yb=4a2−4b2=4(a2−b2)
To prove the first part:
Let us begin with RHS of the first equation.
(a−ib)3=a3−3a2(ib)+3a(ib)2−(ib)3(a−ib)3=a3−3a2(ib)+3a(ib)2−(ib)3
=>(a−ib)3=(a3−3ab2)−i(3a2b−b3)—(5)=>(a−ib)3=(a3−3ab2)−i(3a2b−b3)—(5)
From (1)(1), a3−3ab2=xa3−3ab2=x
From (3)(3), 3a2b−b3=y3a2b−b3=y
Therefore, (5)=>(a−ib)3=x−iy(5)=>(a−ib)3=x−iy
=>(a−ib)=(x−iy)13=>(a−ib)=(x−iy)13
Thus proved.
hope it helps
Answered by
0
ANSWER IN THE ATTACHMENT
Attachments:
Similar questions