prove it plz plz plz plz
Answers
Solution
Answer:
hey mate
Step-by-step explanation:
Solution
\bf We \:\:haveWehave
\tt\to \dfrac{ x^{-1}}{ x^{-1}+y^{-1}} + \dfrac{x^{-1}}{ x^{-1}-y^{-1}}=\dfrac{2y^2}{y^2-x^2}→x−1+y−1x−1+x−1−y−1x−1=y2−x22y2
\bf Taking\:\:LCM\:\: we\:\: getTakingLCMweget
\tt\to \dfrac{x^{-1}(x^{-1}-y^{-1})+x^{-1}(x^{-1}+y^{-1})}{(x^{-1}+ y^{-1})(x^{-1}-y^{-1})}→(x−1+y−1)(x−1−y−1)x−1(x−1−y−1)+x−1(x−1+y−1)
\bf Using\:\:Some\:\:identitiesUsingSomeidentities
\to\tt (a+b)(a-b)=a^2-b^2→(a+b)(a−b)=a2−b2
\to\tt a(c+b) = ac+ab→a(c+b)=ac+ab
\bf Now\:\:we\:\: getNowweget
\tt\to \dfrac{x^{-2}- x^{-1}y^{-1}+x^{-2}+ x^{-1}y^{-1}}{(x^{-2}-y^{-2})}→(x−2−y−2)x−2−x−1y−1+x−2+x−1y−1
\tt\to\dfrac{2x^{-2}}{x^{-2}-y^{-2}}→x−2−y−22x−2
\tt\to\dfrac{\dfrac{2}{x^2} }{\dfrac{1}{x^2}-\dfrac{1}{y^2} }→x21−y21x22
\to\tt\dfrac{\dfrac{2}{x^2} }{\dfrac{y^2-x^2}{x^2y^2} }→x2y2y2−x2x22
\tt\to\dfrac{2}{\dfrac{x^2(y^2-x^2)}{x^2y^2} }→x2y2x2(y2−x2)2
\tt\to\dfrac{2}{\dfrac{(y^2-x^2)}{y^2} }→y2(y2−x2)2
\tt\to\dfrac{2y^2}{{(y^2-x^2)}}→(y2−x2)2y2
\bf Hence\:\:ProvedHenceProved