Math, asked by Daknam, 1 year ago

Prove it, solve it quick​

Attachments:

Answers

Answered by cutiekrishna
0

Answer:

Exponential laws:-

 \frac{ {a}^{m} }{ {a}^{n} }  =  {a}^{m - n}  \\

Applying the law here :-

 \frac{( {l})^{ \frac{3}{2} } }{l}  +  \frac{( {m)}^{ \frac{2}{3} } }{ m}  \\  {l}^{ (\frac{3}{2} - 1) }  +  {m}^{( \frac{2}{3}  - 1)}  \\  {l}^{ (\frac{3 - 2}{2}) }  +  {m}^{( \frac{2 - 3}{3}) }  \\  {l}^{( \frac{1}{2}) }   + {m}^{( \frac{ - 1}{3} )}  \\  \sqrt{l}  +  </em></strong><strong><em>1</em></strong><strong><em>/</em></strong><strong><em>\sqrt[3]{m}  = </em></strong><strong><em>RHS</em></strong><strong><em>

Hence proved that LHS = RHS

=====================

Answered by mahak87891
0

Answer:

here is your answer

plz mark me as brainliest

Similar questions