prove it:
tan`¹x+tan`¹y+tan`¹z=tan`¹ x+y+z-xyz/1-xy-yz-zx
Answers
Answer:
Given, tan^-1x + tan^-1y + tan^-1z = π
tan^-1x + tan^-1y = π - tan^-1z
we know, tan^-1P + tan^-1Q = tan^-1(P + Q)/(1 - PQ) , where PQ < 1
so, tan^-1x + tan^-1y = tan^-1(x + y)(1 - xy)
so, tan^-1(x + y)/(1 - xy) = π - tan^-1z
(x + y)/(1 - xy) = tan(π - tan^-z)
we know, tan(π - ∅) = - tan∅
so, (x + y)/(1 - xy) =- tan(tan^-1(z))
=> (x + y)/(1 - xy) = -z
=> (x + y) = (1 - xy)(-z) = -z + xyz
=> x + y + z = xyz [ hence proved
Read more on Brainly.in - https://brainly.in/question/5596429#readmore
Answer:
tan`¹x=alfa
tan`¹=beta
tan`¹=gamma
tan alfa=x, tan beta=y, tan gamma=z
:.now,
tan(alfa+beta+gamma)
= tan alfa+tan beta+tan gamma-tan alfa tan beta tan gamma
=x+y+z-xyz/1-xy-yz-zx
:.alfa + beta+ gamma=tan`¹ x+y+z-xyz/1-xy-yz+zx
or, tan`¹x+tan`¹y+tan`¹z=tan`¹ x+y+z-xyz/1-xy-yz-zx
(prove)
(hope it's helpful☺)