Math, asked by suspkp, 1 year ago

prove it (tan+cot)^2-(tan-cot)^2 =4

Answers

Answered by drashti5
13

( \tan \alpha  +  \cot \alpha ) {}^{2}   -  ( \tan \alpha  -  \cot \alpha) {}^{2}  \\  =  (\tan {}^{2}  \alpha  + 2 \tan \alpha    \cot \alpha  +  \cot {}^{2}  \alpha) - ( \tan \alpha  {}^{2} - 2 \tan \alpha \cot \alpha  +  \ \cot {}^{2}   \alpha ) \\  =  \tan {}^{2} \alpha  + 2 \tan\alpha  \cot \alpha  +  \cot {}^{2}    \alpha  -  \tan {}^{2} \alpha  + 2 \tan \alpha  \cot \alpha -  \cot {}^{2}   \alpha  \\  = 4 \tan \alpha  \cot \alpha \\  = 4 \:  \:  \:  \:  \: (because. \:  \tan \alpha  \cot \alpha = 1 ) \\ so.......this \: is \: proven........ \\ hope \: this \: helps........ \\ if \: correct.....mark \: as \: brainlist
Answered by drashti3
3
drashti5 gave correct answer
Similar questions