Math, asked by sg7pro, 1 month ago

prove it
....

tan theta +2 tan 2 theta + 4 tan 4 theta + 8 cot 8 theta = cot theta​

Answers

Answered by mathdude500
10

\underline{\bold{Given \:Question - }}

Prove that

\red{\rm :\longmapsto\:tan\theta  + 2tan\theta  + 4tan4\theta  + 8cot8\theta  = cot\theta }

\large\underline{\sf{Solution-}}

Consider,

\red{\rm :\longmapsto\:tan\theta  + 2tan\theta  + 4tan4\theta  + 8cot8\theta }

can be rewritten as

\rm \:  =  \:  \: tan\theta  + 2tan2\theta  + 4tan4\theta  + \dfrac{8}{tan8\theta }

We know,

\boxed{ \rm{ tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

So, above can be rewritten as

\rm \:  =  \:  \: tan\theta  + 2tan2\theta  + 4tan4\theta  + \dfrac{8}{\dfrac{2tan4\theta }{1 -  {tan}^{2} 4\theta }  }

\rm \:  =  \:  \: tan\theta  + 2tan2\theta  + 4tan4\theta  + \dfrac{4(1 -  {tan}^{2} 4\theta )}{tan4\theta }

\rm \:  =  \:  \: tan\theta  + 2tan2\theta   + \dfrac{4 {tan}^{2} \theta  + 4(1 -  {tan}^{2} 4\theta )}{tan4\theta }

\rm \:  =  \:  \: tan\theta  + 2tan2\theta   + \dfrac{4 {tan}^{2} \theta  + 4 -  4{tan}^{2} 4\theta }{tan4\theta }

\rm \:  =  \:  \: tan\theta  + 2tan2\theta   + \dfrac{4 }{tan4\theta }

Again, using

\boxed{ \rm{ tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

\rm \:  =  \:  \: tan\theta  + 2tan2\theta   + \dfrac{4 }{\dfrac{2tan2\theta }{1 -  {tan}^{2}2\theta  } }

\rm \:  =  \:  \: tan\theta  + 2tan2\theta   + \dfrac{2(1 -  {tan}^{2} 2\theta )}{tan2\theta }

\rm \:  =  \:  \: tan\theta  + \dfrac{2 {tan}^{2}2\theta  +  2 -  2{tan}^{2} 2\theta }{tan2\theta }

\rm \:  =  \:  \: tan\theta  + \dfrac{2}{tan2\theta }

Again using,

\boxed{ \rm{ tan2x =  \frac{2tanx}{1 -  {tan}^{2} x}}}

\rm \:  =  \:  \: tan\theta  + \dfrac{2}{\dfrac{2tan\theta }{1 -  {tan}^{2} \theta }}

\rm \:  =  \:  \: tan\theta  +\dfrac{1 -  {tan}^{2} \theta }{tan\theta }

\rm \:  =  \: \: \dfrac{ {tan}^{2}\theta  +  1 -  {tan}^{2} \theta }{tan\theta }

\rm \:  =  \:  \: \dfrac{1}{tan\theta }

\rm \:  =  \:  \: cot\theta

Hence, Proved

Additional Information :-

\boxed{ \rm{ sin2x = 2sinx \: cosx}}

\boxed{ \rm{ sin2x =  \frac{2tanx}{1 +  {tan}^{2}x } }}

\boxed{ \rm{ cos2x =  {cos}^{2}x -  {sin}^{2} x}}

\boxed{ \rm{ cos2x =  1 - 2{sin}^{2} x}}

\boxed{ \rm{ cos2x =  2{cos}^{2} x - 1}}

\boxed{ \rm{ cos2x =  \frac{1 -  {tan}^{2} x}{1 +  {tan}^{2} x}}}

\boxed{ \rm{ sin3x = 3sinx - 4 {sin}^{3}x}}

\boxed{ \rm{ cos3x = 4 {cos}^{3}x - 3cosx}}

Answered by Ʀɑү
104

Answer:

To prove:-

  \star \:  \tt\tan \theta + 2\tan 2\theta + 4\tan 4\theta + 8\tan 8\theta =  \cot\theta

Step-by-step explanation:

We Know,

  : \longrightarrow \bf \cot \theta - \tan \theta =  \frac{1}{\tan \theta}  - \tan \theta \\  \\  \:  \:  \:  \:    : \longrightarrow \frac{1 - {\tan}^{2} \theta }{\tan \theta}  = 2 \bigg\lgroup\frac{1 - {\tan}^{2} \theta }{\tan \theta}\bigg\rgroup

   : \longrightarrow\cot\theta - \tan \theta =  \frac{2}{\tan 2\theta}  \\  \\ \longrightarrow\cot\theta - \tan \theta  = 2\cot 2\theta \: ....(i)

We have to prove that,

  \star \:  \tt\tan \theta + 2\tan 2\theta + 4\tan 4\theta + 8\tan 8\theta =  \cot\theta

⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀⠀or

\star \:  \tt\cot \theta  - \tan \theta  - 2\tan \theta  -  4\tan 4\theta - 8\cot8\theta = 0

Now, Taking left hand side (LHS),

 : \implies\cot \theta  - \tan \theta  - 2\tan \theta  -  4\tan 4\theta - 8\cot8\theta  \\  \\  : \implies(\cot \theta  - \tan \theta ) - 2\tan \theta  -  4\tan 4\theta - 8\cot8\theta \\  \\  : \implies2\cot 2\theta  - 2\tan 2\theta   -  4\tan 4\theta - 8\cot8\theta

Using eqn (i)....

 : \implies \sf2(\cot 2\theta  - \tan 2\theta)  -  4\tan 4\theta - 8\cot8\theta \\  \\  : \implies \sf2(2\cot 4\theta)  -  4\tan 4\theta - 8\cot8\theta \\  \\  : \implies \sf4\cot 4\theta  -   4\tan 4\theta - 8\cot8\theta \\  \\  : \implies \sf4(\cot 4\theta  - \tan 4\theta)   - 8\cot8\theta \\  \\  : \implies \sf4(2\cot 8\theta )   - 8\cot8\theta \\  \\  : \implies \sf8\cot 8\theta    - 8\cot8\theta \\  \\  : \implies0

Hence , LHS = RHS

Similar questions