Prove it,
Answers
we know:-
now,
we also know that :-
I HOPE IT'S HELP YOU DEAR,
THANKS
Answer:
HELLO DEAR,
we know:- \bf{cos^{-1}x + cos^{-1}y = cos^{-1}\{{xy - \sqrt{(1 - x^2)(1 - y^2)}}\}}cos
−1
x+cos
−1
y=cos
−1
{xy−
(1−x
2
)(1−y
2
)
}
now,
\bf{cos^{-1}3/5 + cos^{-1}12/13}cos
−1
3/5+cos
−1
12/13
\begin{lgathered}\bf{\implies cos^{-1}\{(3/5)(12/13) - \sqrt{(1 - 9/25)(1 - 144/169)}\}}\\ \\ \bf{\implies cos^{-1}\{36/65 - \sqrt{(16/25)(25/169)}\}} \\\\ \bf{\implies cos^{-1}\{36/65 - 4/13\}}\\ \\ \bf{\implies cos^{-1} \{\frac{36 - 20}{65}\}}\\ \\\bf{\implies cos^{-1} \frac{16}{65}}\end{lgathered}
⟹cos
−1
{(3/5)(12/13)−
(1−9/25)(1−144/169)
}
⟹cos
−1
{36/65−
(16/25)(25/169)
}
⟹cos
−1
{36/65−4/13}
⟹cos
−1
{
65
36−20
}
⟹cos
−1
65
16
we also know that :- \bold{cos^{-1}z = sin^{-1}\sqrt{1 - z^2}}cos
−1
z=sin
−1
1−z
2
\bold{\therefore , cos^{-1}16/65 = sin^{-1}\sqrt{1 - 256/4225}}∴,cos
−1
16/65=sin
−1
1−256/4225
\bold{\implies sin^{-1}\sqrt{\frac{4225 - 256}{4225}} = sin^{-1}63/65}⟹sin
−1
4225
4225−256
=sin
−1
63/65
\bold{\implies cos^{-1}3/5 + cos^{-1}12/13 = sin^{-1}63/65}⟹cos
−1
3/5+cos
−1
12/13=sin
−1
63/65
I HOPE IT'S HELP YOU DEAR,
THANKS