Math, asked by Mister360, 3 months ago

Prove it
\boxed{\sf \dfrac{1-tan^2\theta}{cot^2\theta-1}=tan^2\theta}

Note:-
️Content Quality Ans required
️No Googl.e
️No spams
️Ans must be in 60+words
️ Strict Action will be taken against spammers​

Answers

Answered by 12thpáìn
5

Prove it

\\\:  \:  \:  \:  \: \sf \dfrac{1-tan^2\theta}{cot^2\theta-1}=tan^2\theta\\\\

Solution

 \\~~~~~\implies\sf \dfrac{1-tan^2\theta}{cot^2\theta-1}=tan^2\theta

  • We know cot²θ = 1/tan²θ

~~~~~\implies\sf \dfrac{1-tan^2\theta}{ \dfrac{1} {tan^2\theta} - 1}=tan^2\theta

  • Taking LCM

~~~~~\implies\sf \dfrac{1-tan^2\theta}{ \dfrac{1 - tan^2\theta} {tan^2\theta}}=tan^2\theta

 ~~~~~\implies\sf \dfrac{ \cancel{1 -tan^2\theta}}{  \cancel{1 - t an^2\theta}}  \times {tan^2\theta}=tan^2\theta

~~~~~\implies\bf { {tan^2\theta}=tan^2\theta} \:  \:   _{proved}  \\  \\  \\

_____________________

Relations among trigonometrical ratios:

  • sinθ×cosecθ=1
  • sinθ=1∕cosecθ
  • cosecθ=1∕sinθ
  • cosθ×secθ=1
  • cosθ=1∕secθ
  • secθ=1∕cosθ
  • tanθ×cotθ=1
  • tanθ=1∕cotθ
  • cotθ=1∕tanθ
  • sin²θ+cos²θ=1
  • sin²θ=1-cos²θ
  • cos²θ=1-sin²θ
  • tanθ=sinθ∕cosθ
  • cotθ=cosθ∕sinθ
  • sec²θ-tan²θ=1
  • sec²θ=1+tan²θ=1
  • tan²θ=sec²θ-1
  • cosec²θ-cot²θ=1
  • cosec²θ=1+cot²θ
  • cot²θ=cosec²θ-1

_____________________

Similar questions