Math, asked by AestheticSky, 11 days ago

Prove it :-

\\\bullet\quad\sf \cos\theta+i\sin\theta=e^{i\theta} \\

Answers

Answered by mathdude500
19

\large\underline{\sf{Solution-}}

We know

\rm :\longmapsto\:cosx =  1 - \dfrac{ {x}^{2} }{2!}  + \dfrac{ {x}^{4} }{4!}  - \dfrac{ {x}^{6} }{6!}  +  -  -

\rm :\longmapsto\:sinx = x - \dfrac{ {x}^{3} }{3!}  + \dfrac{ {x}^{5} }{5!}  - \dfrac{ {x}^{7} }{7!}  +  -  -  -

Also, we know

\rm :\longmapsto\: {e}^{x} = 1 + x + \dfrac{ {x}^{2} }{2!}  + \dfrac{ {x}^{3}}{3!}  + \dfrac{ {x}^{4} }{4!}  + \dfrac{ {x}^{5} }{5!}  -  -  -

Now, Replace x by ix

So, we get

\rm :\longmapsto\: {e}^{ix} = 1 + ix + \dfrac{ {(ix)}^{2} }{2!}  + \dfrac{ {(ix)}^{3}}{3!}  + \dfrac{ {(ix)}^{4} }{4!}  + \dfrac{ {(ix)}^{5} }{5!}  -  -  -

\rm :\longmapsto\: {e}^{ix} = 1 + ix + \dfrac{ { {i}^{2} x}^{2} }{2!}  + \dfrac{{ {i}^{3} x}^{3}}{3!}  + \dfrac{ { {i}^{4} x}^{4} }{4!}  + \dfrac{ { {i}^{5} x}^{5} }{5!}  -  -  -

We know,

\boxed{ \tt{ \:  {i}^{2} =  - 1}} \:  \: \boxed{ \tt{ \:  {i}^{3} =  - i}} \:  \: \boxed{ \tt{ \:  {i}^{4} = 1 \: }} \:  \: \boxed{ \tt{ \:  {i}^{5} = i \: }}

So, using this, we get

\rm :\longmapsto\: {e}^{ix} = 1 + ix -  \dfrac{{x}^{2} }{2!}  -  \dfrac{{ix}^{3}}{3!}  + \dfrac{{x}^{4} }{4!}  + i\dfrac{{x}^{5} }{5!}  -  -  -

\rm :\longmapsto\: {e}^{ix}=\bigg[1 - \dfrac{ {x}^{2} }{2!}+\dfrac{ {x}^{4} }{4!}  +  -  - \bigg] + i\bigg[x - \dfrac{ {x}^{3} }{3!}\dfrac{ {x}^{5}}{5!} +  -  -\bigg]

So, using expansion of sinx and cosx, we get

\rm :\longmapsto\: {e}^{ix} = cosx \:  + \:  i \: sinx

Now, Replace

\red{\rm :\longmapsto\:x \: with \:  \theta \:  \: we \: get \: }

\rm :\longmapsto\: \boxed{ \tt{ \: {e}^{i\theta} = cos\theta \:  + \:  i \: sin\theta \: }}

Hence, Proved

▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬▬

Learn More :-

Argument of complex number

\begin{gathered}\boxed{\begin{array}{c|c} \bf Complex \: number & \bf arg(z) \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf x + iy & \sf  {tan}^{ - 1}\bigg |\dfrac{y}{x} \bigg|   \\ \\ \sf  - x + iy & \sf \pi - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf  - x - iy & \sf  - \pi + {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \\ \\ \sf x - iy & \sf  - {tan}^{ - 1}\bigg |\dfrac{y}{x}\bigg | \end{array}} \\ \end{gathered}

Answered by Anonymous
1

Given Expression :-

  \\  \quad \bullet \quad  \sf \bigg(\dfrac{x}{y} \bigg)^{a-b} \times \bigg( \dfrac{y}{z}  \bigg)^{b-c} \times \bigg( \dfrac{z}{x}  \bigg)^{c-a} \\

We know that :-

 \\  \quad \mapsto \quad \boxed{ \frak{ \bigg(\dfrac{a}{b} \bigg) ^{c - d} =  \dfrac{ {a}^{c} }{ {b}^{d} } }  } \bigstar \\

Calculation :-

  \\  \quad \longrightarrow \quad  \sf \bigg(\dfrac{x}{y} \bigg)^{a-b} \times \bigg( \dfrac{y}{z}  \bigg)^{b-c} \times \bigg( \dfrac{z}{x}  \bigg)^{c-a} \\

  \\  \quad \longrightarrow \quad  \sf \dfrac{ {x}^{a} }{ {y}^{b} }  \times  \dfrac{ {y}^{b} }{ {z}^{c} }   \times \dfrac{ {z}^{c} }{ {x}^{a} }   \\

 \\  \quad \therefore \quad \boxed{ \frak{1}} \bigstar \\

_________________________

Similar questions