Math, asked by Ghayug523, 1 year ago

prove it
 \frac{1 +  \sin \theta  -  \cos \theta}{1 +  \sin \theta +  \cos \theta}  =  \tan \frac{1}{2}  \theta

Answers

Answered by Swarnimkumar22
8
\bold{\huge{Hay!!}}


\bold{Dear\:user!!}



\bold{\underline{Question-}}

prove it
 \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta} = \tan \frac{1}{2} \theta




\bold{\underline{Answer-}}

LHS =  \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}



 =  \frac{2 {sin}^{2} \frac{ \theta}{2}   + 2sin \frac{ \theta}{2} cos \frac{ \theta}{2} }{2 {cos}^{2} \frac{ \theta}{2} + 2sin \frac{ \theta}{2} cos \frac{ \theta}{2}   }  \\



 =  \frac{2sin \frac{ \theta}{2}(sin \frac{ \theta}{2}  + cos \:  \frac{ \theta}{2} ) }{2cos \frac{ \theta}{2} (cos \frac{ \theta}{2} + sin \frac{ \theta}{2} ) }  \\


 =  \frac{sin \frac{ \theta}{2} }{cos \frac{ \theta}{2} }


 = tan \frac{1}{2}  \theta


LHS = RHS

Hence proved,

Swarnimkumar22: OK I invite you some where check kar leana
Swarnimkumar22: sent kar dia
Swarnimkumar22: gmail check kar leana
am0i0hot0or0sexy: didn't come
Swarnimkumar22: come there yll
Swarnimkumar22: Why
am0i0hot0or0sexy: message didn't arrive
Swarnimkumar22: Check your gmail I sent you
am0i0hot0or0sexy: no
am0i0hot0or0sexy: it didn't come
Answered by Anonymous
0

Answer:

Step-by-step explanation:

LHS =  \frac{1 + \sin \theta - \cos \theta}{1 + \sin \theta + \cos \theta}  

=  \frac{2 {sin}^{2} \frac{ \theta}{2}   + 2sin \frac{ \theta}{2} cos \frac{ \theta}{2} }{2 {cos}^{2} \frac{ \theta}{2} + 2sin \frac{ \theta}{2} cos \frac{ \theta}{2}   }  \\  

=  \frac{2sin \frac{ \theta}{2}(sin \frac{ \theta}{2}  + cos \:  \frac{ \theta}{2} ) }{2cos \frac{ \theta}{2} (cos \frac{ \theta}{2} + sin \frac{ \theta}{2} ) }  \\  

=  \frac{sin \frac{ \theta}{2} }{cos \frac{ \theta}{2} }  

= tan \frac{1}{2}  \theta

LHS = RHS  

Hence proved,

Similar questions